These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26347270)

  • 1. New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge.
    Li L; Zhang H; Huang Q
    Sci Rep; 2015 Sep; 5():13683. PubMed ID: 26347270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of Microcystis aeruginosa by DC glow discharge plasma: Impacts on cell integrity, pigment contents and microcystins degradation.
    Zhang H; Yang L; Yu Z; Huang Q
    J Hazard Mater; 2014 Mar; 268():33-42. PubMed ID: 24468526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sono-Fenton hybrid process on the inactivation of Microcystis aeruginosa: Extracellular and intracellular oxidation.
    Wu X; Liu J; Zhu JJ
    Ultrason Sonochem; 2019 May; 53():68-76. PubMed ID: 30600211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa.
    Guo X; Liu X; Pan J; Yang H
    Sci Rep; 2015 Oct; 5():14720. PubMed ID: 26423356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Xie X; Sakoda A; Sagehashi M; Li FM
    Aquat Toxicol; 2009 Feb; 91(3):262-9. PubMed ID: 19131120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa.
    Qian H; Yu S; Sun Z; Xie X; Liu W; Fu Z
    Aquat Toxicol; 2010 Sep; 99(3):405-12. PubMed ID: 20566224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of algal viability during electrochemical disinfection using Ti/RuO2 electrodes.
    Liang W; Wang K; Chen L; Ruan L; Sui L
    Water Sci Technol; 2011; 64(1):162-70. PubMed ID: 22053471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H
    Zhou T; Zheng J; Cao H; Wang X; Lou K; Zhang X; Tao Y
    Chemosphere; 2018 Nov; 211():1098-1108. PubMed ID: 30223325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin C modulates Microcystis aeruginosa death and toxin release by induced Fenton reaction.
    Chen Y; Li J; Wei J; Kawan A; Wang L; Zhang X
    J Hazard Mater; 2017 Jan; 321():888-895. PubMed ID: 27745956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allelopathic effect of pyrogallic acid on cyanobacterium Microcystis aeruginosa: The regulatory role of nitric oxide and its significance for controlling harmful algal blooms (HABs).
    He Y; Zhou Y; Zhou Z; He J; Liu Y; Xiao Y; Long L; Deng O; Xiao H; Shen F; Deng S; Luo L
    Sci Total Environ; 2023 Feb; 858(Pt 1):159785. PubMed ID: 36309262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation and degradation of Microcystis aeruginosa by UV-C irradiation.
    Ou H; Gao N; Deng Y; Wang H; Zhang H
    Chemosphere; 2011 Nov; 85(7):1192-8. PubMed ID: 21872902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of algal organic matter of Microcystis aeruginosa on ferrate decay and MS2 bacteriophage inactivation.
    Wu X; Tang A; Bi X; Nguyen TH; Yuan B
    Chemosphere; 2019 Dec; 236():124727. PubMed ID: 31549669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Growth inhibition of Microcystis aeruginosa in packed-bed discharge plasma Reactor].
    Wang CH; Li GF; Wu Y; Wang Y
    Huan Jing Ke Xue; 2008 Feb; 29(2):368-74. PubMed ID: 18613507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively.
    Xuan H; Dai X; Li J; Zhang X; Yang C; Luo F
    Sci Total Environ; 2017 Apr; 583():214-221. PubMed ID: 28104332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs.
    Song Y; Zhang LL; Li J; Chen M; Zhang YW
    Sci Total Environ; 2018 Sep; 636():230-239. PubMed ID: 29705435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of Microcystis aeruginosa in water via dielectric barrier discharge plasma: Efficacy, mechanism and toxin release.
    Wang H; Qu G; Gan Y; Zhang Z; Li R; Wang T
    J Hazard Mater; 2022 Jan; 422():126956. PubMed ID: 34449344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of a novel indigenous algicidal bacterium
    Zhang C; Massey IY; Liu Y; Huang F; Gao R; Ding M; Xiang L; He C; Wei J; Li Y; Ge Y; Yang F
    J Toxicol Environ Health A; 2019; 82(15):845-853. PubMed ID: 31462174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of Microcystis aeruginosa by H
    Zhang Y; Lin L; Jia D; Dong L; Pan X; Liu M; Huang H; Hu Y; Crittenden JC
    Environ Pollut; 2023 May; 324():121316. PubMed ID: 36804880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species.
    Jia Y; Han G; Wang C; Guo P; Jiang W; Li X; Tian X
    J Hazard Mater; 2010 Nov; 183(1-3):176-81. PubMed ID: 20675050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive removal of harmful algal species Microcystis aeruginosa directly from aqueous solution using polyethylenimine coated polysulfone-biomass composite fiber.
    Kim S; Jeon MS; Kim JY; Sim SJ; Choi JS; Kwon J; Choi YE
    Biodegradation; 2018 Aug; 29(4):349-358. PubMed ID: 29943215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.