These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 26347455)
1. Novel hybrid materials for preparation of bone tissue engineering scaffolds. Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Łatkiewicz A; Nowakowska M J Mater Sci Mater Med; 2015 Sep; 26(9):231. PubMed ID: 26347455 [TBL] [Abstract][Full Text] [Related]
2. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107 [TBL] [Abstract][Full Text] [Related]
3. Biopolymeric hydrogels - nanostructured TiO Zazakowny K; Lewandowska-Łańcucka J; Mastalska-Popławska J; Kamiński K; Kusior A; Radecka M; Nowakowska M Colloids Surf B Biointerfaces; 2016 Dec; 148():607-614. PubMed ID: 27694050 [TBL] [Abstract][Full Text] [Related]
4. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Moreira CD; Carvalho SM; Mansur HS; Pereira MM Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1207-16. PubMed ID: 26478423 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering. Yu HS; Lee EJ; Seo SJ; Knowles JC; Kim HW J Biomater Appl; 2015 Sep; 30(3):338-50. PubMed ID: 26079389 [TBL] [Abstract][Full Text] [Related]
7. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Luo Z; Deng Y; Zhang R; Wang M; Bai Y; Zhao Q; Lyu Y; Wei J; Wei S Colloids Surf B Biointerfaces; 2015 Jul; 131():73-82. PubMed ID: 25969416 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Fan T; Chen J; Pan P; Zhang Y; Hu Y; Liu X; Shi X; Zhang Q Colloids Surf B Biointerfaces; 2016 Nov; 147():217-223. PubMed ID: 27518453 [TBL] [Abstract][Full Text] [Related]
10. Inorganic/organic biocomposite cryogels for regeneration of bony tissues. Mishra R; Kumar A J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655 [TBL] [Abstract][Full Text] [Related]
14. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
15. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Madhumathi K; Sudheesh Kumar PT; Kavya KC; Furuike T; Tamura H; Nair SV; Jayakumar R Int J Biol Macromol; 2009 Oct; 45(3):289-92. PubMed ID: 19549539 [TBL] [Abstract][Full Text] [Related]
16. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Saber-Samandari S; Saber-Samandari S; Kiyazar S; Aghazadeh J; Sadeghi A Int J Biol Macromol; 2016 May; 86():434-42. PubMed ID: 26836617 [TBL] [Abstract][Full Text] [Related]
17. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings. Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342 [TBL] [Abstract][Full Text] [Related]
19. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
20. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold. Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]