These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 26347577)
21. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms. Inada H; Su D; Egerton RF; Konno M; Wu L; Ciston J; Wall J; Zhu Y Ultramicroscopy; 2011 Jun; 111(7):865-76. PubMed ID: 21185651 [TBL] [Abstract][Full Text] [Related]
22. Quantitative atomic resolution scanning transmission electron microscopy. LeBeau JM; Findlay SD; Allen LJ; Stemmer S Phys Rev Lett; 2008 May; 100(20):206101. PubMed ID: 18518557 [TBL] [Abstract][Full Text] [Related]
23. Artifactual atomic displacements on surfaces using annular dark-field images with image simulation. Kobayashi S; Ooe K; Nakayama K; Kuwabara A Microscopy (Oxf); 2024 Jul; 73(4):349-353. PubMed ID: 38226526 [TBL] [Abstract][Full Text] [Related]
27. Direct observation of a stacking fault in Si(1 - x)Ge(x) semiconductors by spherical aberration-corrected TEM and conventional ADF-STEM. Yamasaki J; Kawai T; Tanaka N J Electron Microsc (Tokyo); 2004; 53(2):129-35. PubMed ID: 15180207 [TBL] [Abstract][Full Text] [Related]
30. Is there a Stobbs factor in atomic-resolution STEM-EELS mapping? Xin HL; Dwyer C; Muller DA Ultramicroscopy; 2014 Apr; 139():38-46. PubMed ID: 24561427 [TBL] [Abstract][Full Text] [Related]
31. Atomic number dependence of Z contrast in scanning transmission electron microscopy. Yamashita S; Kikkawa J; Yanagisawa K; Nagai T; Ishizuka K; Kimoto K Sci Rep; 2018 Aug; 8(1):12325. PubMed ID: 30120323 [TBL] [Abstract][Full Text] [Related]
32. Hybrid statistics-simulations based method for atom-counting from ADF STEM images. De Wael A; De Backer A; Jones L; Nellist PD; Van Aert S Ultramicroscopy; 2017 Jun; 177():69-77. PubMed ID: 28292688 [TBL] [Abstract][Full Text] [Related]
33. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. Van Aert S; Verbeeck J; Erni R; Bals S; Luysberg M; Van Dyck D; Van Tendeloo G Ultramicroscopy; 2009 Sep; 109(10):1236-44. PubMed ID: 19525069 [TBL] [Abstract][Full Text] [Related]
34. The spatial coherence function in scanning transmission electron microscopy and spectroscopy. Nguyen DT; Findlay SD; Etheridge J Ultramicroscopy; 2014 Nov; 146():6-16. PubMed ID: 24879321 [TBL] [Abstract][Full Text] [Related]
35. Limits in detecting an individual dopant atom embedded in a crystal. Mittal A; Mkhoyan KA Ultramicroscopy; 2011 Jul; 111(8):1101-10. PubMed ID: 21741341 [TBL] [Abstract][Full Text] [Related]
36. Annular dark field transmission electron microscopy for protein structure determination. Koeck PJB Ultramicroscopy; 2016 Feb; 161():98-104. PubMed ID: 26656466 [TBL] [Abstract][Full Text] [Related]
37. Effects of specimen tilt in ADF-STEM imaging of a-Si/c-Si interfaces. Yu Z; Muller DA; Silcox J Ultramicroscopy; 2008 Apr; 108(5):494-501. PubMed ID: 17920197 [TBL] [Abstract][Full Text] [Related]
38. Insights into image contrast from dislocations in ADF-STEM. Oveisi E; Spadaro MC; Rotunno E; Grillo V; Hébert C Ultramicroscopy; 2019 May; 200():139-148. PubMed ID: 30925259 [TBL] [Abstract][Full Text] [Related]
39. Improvement of depth resolution of ADF-SCEM by deconvolution: effects of electron energy loss and chromatic aberration on depth resolution. Zhang X; Takeguchi M; Hashimoto A; Mitsuishi K; Tezuka M; Shimojo M Microsc Microanal; 2012 Jun; 18(3):603-11. PubMed ID: 22494464 [TBL] [Abstract][Full Text] [Related]
40. Determining the thickness of atomically thin MoS2 and WS2 in the TEM. Wu RJ; Odlyzko ML; Mkhoyan KA Ultramicroscopy; 2014 Dec; 147():8-20. PubMed ID: 24954135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]