These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26347750)

  • 1. Connecting proline metabolism and signaling pathways in plant senescence.
    Zhang L; Becker DF
    Front Plant Sci; 2015; 6():552. PubMed ID: 26347750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline mechanisms of stress survival.
    Liang X; Zhang L; Natarajan SK; Becker DF
    Antioxid Redox Signal; 2013 Sep; 19(9):998-1011. PubMed ID: 23581681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
    Zhang M; Huang H; Dai S
    Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different.
    Rogers H; Munné-Bosch S
    Plant Physiol; 2016 Jul; 171(3):1560-8. PubMed ID: 27208233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens.
    Qamar A; Mysore KS; Senthil-Kumar M
    Front Plant Sci; 2015; 6():503. PubMed ID: 26217357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants.
    Asad MAU; Zakari SA; Zhao Q; Zhou L; Ye Y; Cheng F
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana.
    Zheng Y; Cabassa-Hourton C; Planchais S; Crilat E; Clément G; Dacher M; Durand N; Bordenave-Jacquemin M; Guivarc'h A; Dourmap C; Carol P; Lebreton S; Savouré A
    Plant Cell Environ; 2023 Mar; 46(3):901-917. PubMed ID: 36583533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
    Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A
    J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf status and environmental signals jointly regulate proline metabolism in winter oilseed rape.
    Dellero Y; Clouet V; Marnet N; Pellizzaro A; Dechaumet S; Niogret MF; Bouchereau A
    J Exp Bot; 2020 Mar; 71(6):2098-2111. PubMed ID: 31807778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings.
    Siddiqui MH; Alamri S; Al-Khaishany MY; Khan MN; Al-Amri A; Ali HM; Alaraidh IA; Alsahli AA
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How reactive oxygen species and proline face stress together.
    Ben Rejeb K; Abdelly C; Savouré A
    Plant Physiol Biochem; 2014 Jul; 80():278-84. PubMed ID: 24813727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy.
    Palka J; Oscilowska I; Szoka L
    Amino Acids; 2021 Dec; 53(12):1917-1925. PubMed ID: 33818628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Martincová O; Vanková R
    Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) in the Pacific white shrimp (Litopenaeus vannamei) during biotic and abiotic stress.
    Liang Q; Wu X; Yang P; Kong J; Wei W; Qiao X; Liu Y; Wang W
    Aquat Toxicol; 2019 Mar; 208():1-11. PubMed ID: 30592983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance.
    Kavi Kishor PB; Suravajhala P; Rathnagiri P; Sreenivasulu N
    Front Plant Sci; 2022; 13():867531. PubMed ID: 35795343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights.
    Zhang Y; Wang HL; Li Z; Guo H
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32294898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations.
    Pintó-Marijuan M; Munné-Bosch S
    J Exp Bot; 2014 Jul; 65(14):3845-57. PubMed ID: 24683180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline metabolism and cancer: emerging links to glutamine and collagen.
    Phang JM; Liu W; Hancock CN; Fischer JW
    Curr Opin Clin Nutr Metab Care; 2015 Jan; 18(1):71-7. PubMed ID: 25474014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline Concentration and Its Metabolism Are Regulated in a Leaf Age Dependent Manner But Not by Abscisic Acid in Pea Plants Exposed to Cadmium Stress.
    Zdunek-Zastocka E; Grabowska A; Michniewska B; Orzechowski S
    Cells; 2021 Apr; 10(4):. PubMed ID: 33923901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants.
    Zhao W; Zhao H; Wang H; He Y
    Front Plant Sci; 2022; 13():1044500. PubMed ID: 36352873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.