These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 26347861)
1. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes. Vargas-Tah A; Gosset G Front Bioeng Biotechnol; 2015; 3():116. PubMed ID: 26347861 [TBL] [Abstract][Full Text] [Related]
2. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545 [TBL] [Abstract][Full Text] [Related]
3. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Vannelli T; Wei Qi W; Sweigard J; Gatenby AA; Sariaslani FS Metab Eng; 2007 Mar; 9(2):142-51. PubMed ID: 17204442 [TBL] [Abstract][Full Text] [Related]
4. p-Hydroxycinnamic acid production directly from cellulose using endoglucanase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Kawai Y; Noda S; Ogino C; Takeshima Y; Okai N; Tanaka T; Kondo A Microb Cell Fact; 2013 May; 12():45. PubMed ID: 23651460 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Synechocystis sp. PCC 6803 for the production of aromatic amino acids and derived phenylpropanoids. Brey LF; Włodarczyk AJ; Bang Thøfner JF; Burow M; Crocoll C; Nielsen I; Zygadlo Nielsen AJ; Jensen PE Metab Eng; 2020 Jan; 57():129-139. PubMed ID: 31722246 [TBL] [Abstract][Full Text] [Related]
6. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Gottardi M; Knudsen JD; Prado L; Oreb M; Branduardi P; Boles E Appl Microbiol Biotechnol; 2017 Jun; 101(12):4883-4893. PubMed ID: 28353001 [TBL] [Abstract][Full Text] [Related]
7. Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. Noda S; Miyazaki T; Miyoshi T; Miyake M; Okai N; Tanaka T; Ogino C; Kondo A J Ind Microbiol Biotechnol; 2011 May; 38(5):643-8. PubMed ID: 21424686 [TBL] [Abstract][Full Text] [Related]
8. Production of aromatic compounds in bacteria. Gosset G Curr Opin Biotechnol; 2009 Dec; 20(6):651-8. PubMed ID: 19875279 [TBL] [Abstract][Full Text] [Related]
9. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Qi WW; Vannelli T; Breinig S; Ben-Bassat A; Gatenby AA; Haynie SL; Sariaslani FS Metab Eng; 2007 May; 9(3):268-76. PubMed ID: 17451990 [TBL] [Abstract][Full Text] [Related]
10. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. Lee JH; Wendisch VF J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872 [TBL] [Abstract][Full Text] [Related]
11. Genetic engineering of Escherichia coli to improve L-phenylalanine production. Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315 [TBL] [Abstract][Full Text] [Related]
12. Rational Engineering of Phenylalanine Accumulation in Otto M; Wynands B; Lenzen C; Filbig M; Blank LM; Wierckx N Front Bioeng Biotechnol; 2019; 7():312. PubMed ID: 31824929 [TBL] [Abstract][Full Text] [Related]
13. Identification of the Tyrosine- and Phenylalanine-Derived Soluble Metabolomes of Sorghum. Simpson JP; Olson J; Dilkes B; Chapple C Front Plant Sci; 2021; 12():714164. PubMed ID: 34594350 [TBL] [Abstract][Full Text] [Related]
14. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. Fujiwara R; Noda S; Tanaka T; Kondo A J Biosci Bioeng; 2016 Dec; 122(6):730-735. PubMed ID: 27405271 [TBL] [Abstract][Full Text] [Related]
15. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae. Jendresen CB; Stahlhut SG; Li M; Gaspar P; Siedler S; Förster J; Maury J; Borodina I; Nielsen AT Appl Environ Microbiol; 2015 Jul; 81(13):4458-76. PubMed ID: 25911487 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Escherichia coli to optimize melanin synthesis from glucose. Chávez-Béjar MI; Balderas-Hernandez VE; Gutiérrez-Alejandre A; Martinez A; Bolívar F; Gosset G Microb Cell Fact; 2013 Nov; 12():108. PubMed ID: 24225202 [TBL] [Abstract][Full Text] [Related]
17. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids. Kallscheuer N; Marienhagen J Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327 [TBL] [Abstract][Full Text] [Related]
18. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280 [TBL] [Abstract][Full Text] [Related]
19. Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration. Lynch JH; Orlova I; Zhao C; Guo L; Jaini R; Maeda H; Akhtar T; Cruz-Lebron J; Rhodes D; Morgan J; Pilot G; Pichersky E; Dudareva N Plant J; 2017 Dec; 92(5):939-950. PubMed ID: 28977710 [TBL] [Abstract][Full Text] [Related]
20. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Sariaslani FS Annu Rev Microbiol; 2007; 61():51-69. PubMed ID: 17456010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]