BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26348484)

  • 21. Dexamethasone and MicroRNA-204 Inhibit Corneal Neovascularization.
    Zhang X; Wang G; Wang Q; Jiang R
    Mil Med; 2024 Jan; 189(1-2):374-378. PubMed ID: 36043264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Doxycycline enhances the inhibitory effects of bevacizumab on corneal neovascularization and prevents its side effects.
    Su W; Li Z; Li Y; Lin M; Yao L; Liu Y; He Z; Wu C; Liang D
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9108-15. PubMed ID: 22039247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The long-term effect of tacrolimus on alkali burn-induced corneal neovascularization and inflammation surpasses that of anti-vascular endothelial growth factor.
    Chen L; Zhong J; Li S; Li W; Wang B; Deng Y; Yuan J
    Drug Des Devel Ther; 2018; 12():2959-2969. PubMed ID: 30254425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages.
    Feng Y; Yang X; Huang J; Shen M; Wang L; Chen X; Yuan Y; Dong C; Ma X; Yuan F
    Oxid Med Cell Longev; 2022; 2022():1106313. PubMed ID: 35345831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of RAP1 enhances corneal recovery following alkali injury.
    Poon MW; Yan L; Jiang D; Qin P; Tse HF; Wong IY; Wong DS; Tergaonkar V; Lian Q
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):711-21. PubMed ID: 25574050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization.
    Giacomini C; Ferrari G; Bignami F; Rama P
    Exp Eye Res; 2014 Apr; 121():1-4. PubMed ID: 24560796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization.
    Zhang XP; Li KR; Yu Q; Yao MD; Ge HM; Li XM; Jiang Q; Yao J; Cao C
    FASEB J; 2018 Jul; 32(7):3782-3791. PubMed ID: 29465315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation.
    Shin YJ; Hyon JY; Choi WS; Yi K; Chung ES; Chung TY; Wee WR
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4452-8. PubMed ID: 23716625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of β receptor blockade through propranolol on corneal neovascularization.
    Simavli H; Erdurmus M; Terzi EH; Bucak YY; Önder Hİ; Kükner AŞ
    J Ocul Pharmacol Ther; 2014 Oct; 30(8):650-6. PubMed ID: 24983781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitory effects of Diospyros kaki in a model of allergic inflammation: role of cAMP, calcium and nuclear factor-κB.
    Kim HH; Kim DS; Kim SW; Lim SH; Kim DK; Shin TY; Kim SH
    Int J Mol Med; 2013 Oct; 32(4):945-51. PubMed ID: 23921373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory effect of canstatin in alkali burn-induced corneal neovascularization.
    Wang Y; Yin H; Chen P; Xie L; Wang Y
    Ophthalmic Res; 2011; 46(2):66-72. PubMed ID: 21242701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization.
    Lu P; Li L; Liu G; van Rooijen N; Mukaida N; Zhang X
    Cornea; 2009 Jun; 28(5):562-9. PubMed ID: 19421039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Mouse Model for Corneal Neovascularization by Alkali Burn.
    Ammassam Veettil R; Li W; Pflugfelder SC; Koch DD
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bevacizumab inhibits corneal neovascularization in an alkali burn induced model of corneal angiogenesis.
    Hosseini H; Nejabat M; Mehryar M; Yazdchi T; Sedaghat A; Noori F
    Clin Exp Ophthalmol; 2007 Nov; 35(8):745-8. PubMed ID: 17997779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model.
    Kubota M; Shimmura S; Kubota S; Miyashita H; Kato N; Noda K; Ozawa Y; Usui T; Ishida S; Umezawa K; Kurihara T; Tsubota K
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):427-33. PubMed ID: 20847117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subconjunctival injection of low-molecular-weight heparin-taurocholate 7 inhibits corneal neovascularization.
    Yoon SY; Kim JY; Kim ES; Kim SY; Kim MJ; Tchah H
    Cornea; 2013 Nov; 32(11):1488-92. PubMed ID: 24055905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic effects of topical netrin-4 inhibits corneal neovascularization in alkali-burn rats.
    Han Y; Shao Y; Liu T; Qu YL; Li W; Liu Z
    PLoS One; 2015; 10(4):e0122951. PubMed ID: 25853509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leukocytes in the early events of corneal neovascularization.
    Gan L; Fagerholm P
    Cornea; 2001 Jan; 20(1):96-9. PubMed ID: 11189012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anti-cancer potential of persimmon (Diospyros kaki) leaves via the PDGFR-Rac-JNK pathway.
    Kim HS; Suh JS; Jang YK; Ahn SH; Raja G; Kim JC; Jung Y; Jung SH; Kim TJ
    Sci Rep; 2020 Oct; 10(1):18119. PubMed ID: 33093618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CXCR3 deletion aggravates corneal neovascularization in a corneal alkali-burn model.
    Li S; Shi S; Xia F; Luo B; Ha Y; Luisi J; Gupta PK; Merkley KH; Motamedi M; Liu H; Zhang W
    Exp Eye Res; 2022 Dec; 225():109265. PubMed ID: 36206861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.