These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26348538)

  • 1. Prediction of protein disorder on amino acid substitutions.
    Anoosha P; Sakthivel R; Gromiha MM
    Anal Biochem; 2015 Dec; 491():18-22. PubMed ID: 26348538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable prediction of protein thermostability change upon double mutation from amino acid sequence.
    Huang LT; Gromiha MM
    Bioinformatics; 2009 Sep; 25(17):2181-7. PubMed ID: 19535532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of protein disorder prediction programs on amino acid substitutions.
    Ali H; Urolagin S; Gurarslan Ö; Vihinen M
    Hum Mutat; 2014 Jul; 35(7):794-804. PubMed ID: 24753228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCRATCH: a protein structure and structural feature prediction server.
    Cheng J; Randall AZ; Sweredoski MJ; Baldi P
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W72-6. PubMed ID: 15980571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Average assignment method for predicting the stability of protein mutants.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Biopolymers; 2006 May; 82(1):80-92. PubMed ID: 16453276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins.
    Rawat P; Kumar S; Michael Gromiha M
    Int J Biol Macromol; 2018 Oct; 118(Pt A):1157-1167. PubMed ID: 29949748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding RaCe: a robust method for predicting changes in protein folding rates upon point mutations.
    Chaudhary P; Naganathan AN; Gromiha MM
    Bioinformatics; 2015 Jul; 31(13):2091-7. PubMed ID: 25686635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swfoldrate: predicting protein folding rates from amino acid sequence with sliding window method.
    Cheng X; Xiao X; Wu ZC; Wang P; Lin WZ
    Proteins; 2013 Jan; 81(1):140-8. PubMed ID: 22933332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting disordered regions in proteins based on decision trees of reduced amino acid composition.
    Han P; Zhang X; Norton RS; Feng ZP
    J Comput Biol; 2006 Dec; 13(10):1723-34. PubMed ID: 17238841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations.
    Huang LT; Gromiha MM; Ho SY
    Bioinformatics; 2007 May; 23(10):1292-3. PubMed ID: 17379687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.
    Herrgard S; Cammer SA; Hoffman BT; Knutson S; Gallina M; Speir JA; Fetrow JS; Baxter SM
    Proteins; 2003 Dec; 53(4):806-16. PubMed ID: 14635123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale prediction of proteins with long intrinsically disordered regions.
    Peng Z; Mizianty MJ; Kurgan L
    Proteins; 2014 Jan; 82(1):145-58. PubMed ID: 23798504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting intrinsic disorder from amino acid sequence.
    Obradovic Z; Peng K; Vucetic S; Radivojac P; Brown CJ; Dunker AK
    Proteins; 2003; 53 Suppl 6():566-72. PubMed ID: 14579347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning integration for predicting the effect of single amino acid substitutions on protein stability.
    Ozen A; Gönen M; Alpaydan E; Haliloğlu T
    BMC Struct Biol; 2009 Oct; 9():66. PubMed ID: 19840377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CUPSAT: prediction of protein stability upon point mutations.
    Parthiban V; Gromiha MM; Schomburg D
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W239-42. PubMed ID: 16845001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein.
    Weathers EA; Paulaitis ME; Woolf TB; Hoh JH
    FEBS Lett; 2004 Oct; 576(3):348-52. PubMed ID: 15498561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites.
    Lee TY; Hsu JB; Lin FM; Chang WC; Hsu PC; Huang HD
    J Comput Chem; 2010 Nov; 31(15):2759-71. PubMed ID: 20839302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.