These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 26348559)

  • 1. Imaging fast electrical activity in the brain with electrical impedance tomography.
    Aristovich KY; Packham BC; Koo H; Santos GSD; McEvoy A; Holder DS
    Neuroimage; 2016 Jan; 124(Pt A):204-213. PubMed ID: 26348559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of imaging evoked activity throughout the rat brain using electrical impedance tomography.
    Faulkner M; Hannan S; Aristovich K; Avery J; Holder D
    Neuroimage; 2018 Sep; 178():1-10. PubMed ID: 29753106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging fast electrical activity in the brain during ictal epileptiform discharges with electrical impedance tomography.
    Hannan S; Faulkner M; Aristovich K; Avery J; Walker M; Holder D
    Neuroimage Clin; 2018; 20():674-684. PubMed ID: 30218899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography.
    Hannan S; Faulkner M; Aristovich K; Avery J; Walker MC; Holder DS
    Neuroimage; 2020 Apr; 209():116525. PubMed ID: 31923606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.
    Packham B; Barnes G; Dos Santos GS; Aristovich K; Gilad O; Ghosh A; Oh T; Holder D
    Physiol Meas; 2016 Jun; 37(6):951-67. PubMed ID: 27203477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays.
    Aristovich KY; dos Santos GS; Packham BC; Holder DS
    Physiol Meas; 2014 Jun; 35(6):1095-109. PubMed ID: 24845144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for recording neuronal depolarization with recording at 125-825 Hz: implications for imaging fast neural activity in the brain with electrical impedance tomography.
    Oh T; Gilad O; Ghosh A; Schuettler M; Holder DS
    Med Biol Eng Comput; 2011 May; 49(5):593-604. PubMed ID: 21448692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode array electrical impedance tomography for fast functional imaging in the thalamus.
    Zhu D; McEwan A; Eiber C
    Neuroimage; 2019 Sep; 198():44-52. PubMed ID: 31108212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time imaging of epileptic seizures in rats using electrical impedance tomography.
    Wang L; Sun Y; Xu X; Dong X; Gao F
    Neuroreport; 2017 Aug; 28(11):689-693. PubMed ID: 28628556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterising the frequency response of impedance changes during evoked physiological activity in the rat brain.
    Faulkner M; Hannan S; Aristovich K; Avery J; Holder D
    Physiol Meas; 2018 Apr; 39(3):034007. PubMed ID: 29451499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat.
    Vongerichten AN; Santos GSD; Aristovich K; Avery J; McEvoy A; Walker M; Holder DS
    Neuroimage; 2016 Jan; 124(Pt A):813-823. PubMed ID: 26375207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional electrical impedance tomography of human brain activity.
    Tidswell T; Gibson A; Bayford RH; Holder DS
    Neuroimage; 2001 Feb; 13(2):283-94. PubMed ID: 11162269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modelling study to inform specification and optimal electrode placement for imaging of neuronal depolarization during visual evoked responses by electrical and magnetic detection impedance tomography.
    Gilad O; Horesh L; Holder DS
    Physiol Meas; 2009 Jun; 30(6):S201-24. PubMed ID: 19491442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-dependent characterisation of impedance changes during epileptiform activity in a rat model of epilepsy.
    Hannan S; Faulkner M; Aristovich K; Avery J; Holder D
    Physiol Meas; 2018 Aug; 39(8):085003. PubMed ID: 30047486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the safety of fast neural electrical impedance tomography in the rat brain.
    Hannan S; Faulkner M; Aristovich K; Avery J; Holder D
    Physiol Meas; 2019 Apr; 40(3):034003. PubMed ID: 30840933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetized rabbit.
    Holder DS; Rao A; Hanquan Y
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A179-86. PubMed ID: 9001616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging slow brain activity during neocortical and hippocampal epileptiform events with electrical impedance tomography.
    Hannan S; Aristovich K; Faulkner M; Avery J; Walker MC; Holder DS
    Physiol Meas; 2021 Feb; 42(1):014001. PubMed ID: 33361567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain.
    Liston A; Bayford R; Holder D
    Med Biol Eng Comput; 2012 May; 50(5):425-37. PubMed ID: 22484662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices.
    Rickard RE; Young AMJ; Gerdjikov TV
    J Cogn Neurosci; 2018 Jan; 30(1):42-49. PubMed ID: 28891783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.