These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 26348624)

  • 21. Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations.
    Snowden JS; Adams J; Harris J; Thompson JC; Rollinson S; Richardson A; Jones M; Neary D; Mann DM; Pickering-Brown S
    Amyotroph Lateral Scler Frontotemporal Degener; 2015; 16(7-8):497-505. PubMed ID: 26473392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model.
    Lee JY; Kawaguchi Y; Li M; Kapur M; Choi SJ; Kim HJ; Park SY; Zhu H; Yao TP
    Neurodegener Dis; 2015; 15(6):339-49. PubMed ID: 26360702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts.
    Le Ber I; De Septenville A; Millecamps S; Camuzat A; Caroppo P; Couratier P; Blanc F; Lacomblez L; Sellal F; Fleury MC; Meininger V; Cazeneuve C; Clot F; Flabeau O; LeGuern E; Brice A;
    Neurobiol Aging; 2015 Nov; 36(11):3116.e5-3116.e8. PubMed ID: 26476236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene co-expression analysis unravels a link between C9orf72 and RNA metabolism in myeloid cells.
    Nataf S; Pays L
    Acta Neuropathol Commun; 2015 Oct; 3():64. PubMed ID: 26472214
    [No Abstract]   [Full Text] [Related]  

  • 25. Modeling ALS and FTD with iPSC-derived neurons.
    Lee S; Huang EJ
    Brain Res; 2017 Feb; 1656():88-97. PubMed ID: 26462653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inflammation Induces TDP-43 Mislocalization and Aggregation.
    Correia AS; Patel P; Dutta K; Julien JP
    PLoS One; 2015; 10(10):e0140248. PubMed ID: 26444430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of SOD1 Subcellular Localization by Transfection with Wild- or Mutant-type SOD1 in Primary Neuron and Astrocyte Cultures from ALS Mice.
    Lee DY; Jeon GS; Shim YM; Seong SY; Lee KW; Sung JJ
    Exp Neurobiol; 2015 Sep; 24(3):226-34. PubMed ID: 26412972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adverse effects of a SOD1-peptide immunotherapy on SOD1 G93A mouse slow model of amyotrophic lateral sclerosis.
    Sábado J; Casanovas A; Rodrigo H; Arqué G; Esquerda JE
    Neuroscience; 2015 Dec; 310():38-50. PubMed ID: 26384962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis.
    Tafuri F; Ronchi D; Magri F; Comi GP; Corti S
    Front Cell Neurosci; 2015; 9():336. PubMed ID: 26379505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy.
    Heo JM; Ordureau A; Paulo JA; Rinehart J; Harper JW
    Mol Cell; 2015 Oct; 60(1):7-20. PubMed ID: 26365381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1.
    Broom HR; Rumfeldt JA; Vassall KA; Meiering EM
    Protein Sci; 2015 Dec; 24(12):2081-9. PubMed ID: 26362407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microglial keratan sulfate epitope elicits in central nervous tissues of transgenic model mice and patients with amyotrophic lateral sclerosis.
    Foyez T; Takeda-Uchimura Y; Ishigaki S; Narentuya ; Zhang Z; Sobue G; Kadomatsu K; Uchimura K
    Am J Pathol; 2015 Nov; 185(11):3053-65. PubMed ID: 26362733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translation dysregulation in neurodegenerative diseases: a focus on ALS.
    Wang S; Sun S
    Mol Neurodegener; 2023 Aug; 18(1):58. PubMed ID: 37626421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential response of C9orf72 transcripts following neuronal depolarization.
    Ghaffari LT; Trotti D; Haeusler AR
    iScience; 2023 Jun; 26(6):106959. PubMed ID: 37332610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breakdown of the central synapses in C9orf72-linked ALS/FTD.
    Ghaffari LT; Trotti D; Haeusler AR; Jensen BK
    Front Mol Neurosci; 2022; 15():1005112. PubMed ID: 36187344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging Mechanisms Underpinning Neurophysiological Impairments in
    Pasniceanu IS; Atwal MS; Souza CDS; Ferraiuolo L; Livesey MR
    Front Cell Neurosci; 2021; 15():784833. PubMed ID: 34975412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction.
    Perkins EM; Burr K; Banerjee P; Mehta AR; Dando O; Selvaraj BT; Suminaite D; Nanda J; Henstridge CM; Gillingwater TH; Hardingham GE; Wyllie DJA; Chandran S; Livesey MR
    Mol Neurodegener; 2021 Mar; 16(1):13. PubMed ID: 33663561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional genomics, genetic risk profiling and cell phenotypes in neurodegenerative disease.
    Finkbeiner S
    Neurobiol Dis; 2020 Dec; 146():105088. PubMed ID: 32977020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress.
    Westergard T; McAvoy K; Russell K; Wen X; Pang Y; Morris B; Pasinelli P; Trotti D; Haeusler A
    EMBO Mol Med; 2019 Feb; 11(2):. PubMed ID: 30617154
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.