These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26348704)

  • 1. Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons.
    Qiu H; Zeng XC; Guo W
    ACS Nano; 2015 Oct; 9(10):9877-84. PubMed ID: 26348704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-solid and solid-solid phase transition of monolayer water: high-density rhombic monolayer ice.
    Kaneko T; Bai J; Yasuoka K; Mitsutake A; Zeng XC
    J Chem Phys; 2014 May; 140(18):184507. PubMed ID: 24832288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transitions induced by nanoconfinement in liquid water.
    Giovambattista N; Rossky PJ; Debenedetti PG
    Phys Rev Lett; 2009 Feb; 102(5):050603. PubMed ID: 19257497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous and First-Order Liquid-Solid Phase Transitions in Two-Dimensional Water.
    Ma N; Zhao X; Liang X; Zhu W; Sun Y; Zhao W; Zeng XC
    J Phys Chem B; 2022 Nov; 126(43):8892-8899. PubMed ID: 36282573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric-field-induced phase transition of confined water nanofilms between two graphene sheets.
    Qian Z; Wei G
    J Phys Chem A; 2014 Oct; 118(39):8922-8. PubMed ID: 24831927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolytes under Inhomogeneous Nanoconfinement: Water Structuring-Mediated Local Ion Accumulation.
    Qiu H; Guo W
    J Phys Chem Lett; 2019 Sep; 10(17):4895-4902. PubMed ID: 31402672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of Multilayered Phases of Confined Water: The Importance of Flexible Confining Surfaces.
    Ruiz Pestana L; Felberg LE; Head-Gordon T
    ACS Nano; 2018 Jan; 12(1):448-454. PubMed ID: 29236478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Computational Approach to Determine Liquid-Solid Phase Equilibria of Water Confined to Slit Nanopores.
    Kaneko T; Bai J; Yasuoka K; Mitsutake A; Zeng XC
    J Chem Theory Comput; 2013 Aug; 9(8):3299-310. PubMed ID: 26584089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing Transitions of Nanoconfined Coarse-Grained Water Show Subtle Dependence on Confining Environment.
    Lu Q; Straub JE
    J Phys Chem B; 2016 Mar; 120(9):2517-25. PubMed ID: 26906259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid to quasicrystal transition in bilayer water.
    Johnston JC; Kastelowitz N; Molinero V
    J Chem Phys; 2010 Oct; 133(15):154516. PubMed ID: 20969412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel nanosheets confined 2D rhombic ice: a new platform enhancing chondrogenesis.
    Majood M; Shakeel A; Agarwal A; Jeevanandham S; Bhattacharya R; Kochhar D; Singh A; Kalyanasundaram D; Mohanty S; Mukherjee M
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36044885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transition between bistable ice when coupling electric field and nanoconfinement.
    Mei F; Zhou X; Kou J; Wu F; Wang C; Lu H
    J Chem Phys; 2015 Apr; 142(13):134704. PubMed ID: 25854255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice-Liquid Oscillations in Nanoconfined Water.
    Kastelowitz N; Molinero V
    ACS Nano; 2018 Aug; 12(8):8234-8239. PubMed ID: 30024723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Puckered Zigzag Monolayer Ice: Does a Confined Flat Four-Coordinated Monolayer Ice Always Have a Corresponding Puckered Phase?
    Wei L; Bai Q; Li X; Liu Z; Li C; Cui Y; Shen L; Zhu C; Fang W
    J Phys Chem Lett; 2023 Oct; 14(39):8890-8895. PubMed ID: 37767947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic freezing of confined water.
    Zhang G; Zhang W; Dong H
    J Chem Phys; 2010 Oct; 133(13):134703. PubMed ID: 20942551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-order transition in confined water between high-density liquid and low-density amorphous phases.
    Koga K; Tanaka H; Zeng XC
    Nature; 2000 Nov; 408(6812):564-7. PubMed ID: 11117739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries.
    Liu Y; Jiang J; Pu Y; Francisco JS; Zeng XC
    ACS Nano; 2023 Apr; 17(7):6922-6931. PubMed ID: 36940168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.