BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26348717)

  • 1. Visualizing dopamine released from living cells using a nanoplasmonic probe.
    Qin WW; Wang SP; Li J; Peng TH; Xu Y; Wang K; Shi JY; Fan CH; Li D
    Nanoscale; 2015 Oct; 7(37):15070-4. PubMed ID: 26348717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An amperometric nanobiosensor for the selective detection of K⁺-induced dopamine released from living cells.
    Mir TA; Akhtar MH; Gurudatt NG; Kim JI; Choi CS; Shim YB
    Biosens Bioelectron; 2015 Jun; 68():421-428. PubMed ID: 25617752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.
    Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A
    Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters.
    Tao Y; Lin Y; Ren J; Qu X
    Biosens Bioelectron; 2013 Apr; 42():41-6. PubMed ID: 23202328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles.
    Liu Q; Jing C; Zheng X; Gu Z; Li D; Li DW; Huang Q; Long YT; Fan C
    Chem Commun (Camb); 2012 Oct; 48(77):9574-6. PubMed ID: 22871726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioresponsive controlled-release biosensor using Au nanocages capped with an aptamer-based molecular gate and its application in living cells.
    Wang W; Yan T; Cui S; Wan J
    Chem Commun (Camb); 2012 Oct; 48(82):10228-30. PubMed ID: 22968197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticles conjugated dopamine as sensing platform for SERS detection.
    Qin L; Li X; Kang SZ; Mu J
    Colloids Surf B Biointerfaces; 2015 Feb; 126():210-6. PubMed ID: 25576805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode.
    Adams KL; Jena BK; Percival SJ; Zhang B
    Anal Chem; 2011 Feb; 83(3):920-7. PubMed ID: 21175175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles.
    Yao GH; Liang RP; Huang CF; Zhang L; Qiu JD
    Anal Chim Acta; 2015 Apr; 871():28-34. PubMed ID: 25847158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine sensing and measurement using threshold and spectral measurements in random lasers.
    Wan Ismail WZ; Liu G; Zhang K; Goldys EM; Dawes JM
    Opt Express; 2016 Jan; 24(2):A85-91. PubMed ID: 26832601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin (ET)-1-induced inhibition of ATP release from PC-12 cells is mediated by the ETB receptor: differential response to ET-1 on ATP, neuropeptide Y, and dopamine levels.
    Gardner A; Westfall TC; Macarthur H
    J Pharmacol Exp Ther; 2005 Jun; 313(3):1109-17. PubMed ID: 15687374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal sulfide-functionalized DNA concatamer for ultrasensitive electronic monitoring of ATP using a programmable capillary-based aptasensor.
    Liu B; Zhang B; Chen G; Yang H; Tang D
    Biosens Bioelectron; 2014 Mar; 53():390-8. PubMed ID: 24201002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule biosensing using color coded plasmon resonant metal nanoparticles.
    Xiao L; Wei L; He Y; Yeung ES
    Anal Chem; 2010 Jul; 82(14):6308-14. PubMed ID: 20568720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques.
    Yao GH; Liang RP; Yu XD; Huang CF; Zhang L; Qiu JD
    Anal Chem; 2015 Jan; 87(2):929-36. PubMed ID: 25494977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition by haloperidol of adenosine 5'-triphosphate-evoked responses in rat pheochromocytoma cells.
    Koizumi S; Ikeda M; Nakazawa K; Inoue K; Ito K; Inoue K
    Biochem Biophys Res Commun; 1995 May; 210(2):624-30. PubMed ID: 7755642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation.
    Li BR; Hsieh YJ; Chen YX; Chung YT; Pan CY; Chen YT
    J Am Chem Soc; 2013 Oct; 135(43):16034-7. PubMed ID: 24125072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine.
    Nandi R; Loitongbam L; De J; Jain V; Pal SK
    Analyst; 2019 Feb; 144(4):1110-1114. PubMed ID: 30687868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of dopamine and ATP from PC12 cells treated with dexamethasone, reserpine and bafilomycin A1.
    Kasai Y; Ohta T; Nakazato Y; Ito S
    J Vet Med Sci; 2001 Apr; 63(4):367-72. PubMed ID: 11346169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity.
    Baron R; Zayats M; Willner I
    Anal Chem; 2005 Mar; 77(6):1566-71. PubMed ID: 15762558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.
    Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH
    Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.