These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26348783)

  • 1. Managing Multiple Mandates: A System of Systems Model to Analyze Strategies for Producing Cellulosic Ethanol and Reducing Riverine Nitrate Loads in the Upper Mississippi River Basin.
    Housh M; Yaeger MA; Cai X; McIsaac GF; Khanna M; Sivapalan M; Ouyang Y; Al-Qadi I; Jain AK
    Environ Sci Technol; 2015 Oct; 49(19):11932-40. PubMed ID: 26348783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of biofuel crop production on the formation of hypoxia in the Gulf of Mexico.
    Costello C; Griffin WM; Landis AE; Matthews HS
    Environ Sci Technol; 2009 Oct; 43(20):7985-91. PubMed ID: 19921924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Quality Effects of Economically Viable Land Use Change in the Mississippi River Basin under the Renewable Fuel Standard.
    Ferin KM; Chen L; Zhong J; Acquah S; Heaton EA; Khanna M; VanLoocke A
    Environ Sci Technol; 2021 Feb; 55(3):1566-1575. PubMed ID: 33432817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of nitrate yields in the Mississippi River Basin.
    David MB; Drinkwater LE; McIsaac GF
    J Environ Qual; 2010; 39(5):1657-67. PubMed ID: 21043271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: a comparison of approaches.
    McIsaac GF; David MB; Gertner GZ; Goolsby DA
    J Environ Qual; 2002; 31(5):1610-22. PubMed ID: 12371178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iowa stream nitrate and the Gulf of Mexico.
    Jones CS; Nielsen JK; Schilling KE; Weber LJ
    PLoS One; 2018; 13(4):e0195930. PubMed ID: 29649312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illinois River Nitrate-Nitrogen Concentrations and Loads: Long-term Variation and Association with Watershed Nitrogen Inputs.
    McIsaac GF; David MB; Gertner GZ
    J Environ Qual; 2016 Jul; 45(4):1268-75. PubMed ID: 27380075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate in the Mississippi River and its tributaries, 1980 to 2008: are we making progress?
    Sprague LA; Hirsch RM; Aulenbach BT
    Environ Sci Technol; 2011 Sep; 45(17):7209-16. PubMed ID: 21823673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential water quality changes due to corn expansion in the Upper Mississippi River Basin.
    Secchi S; Gassman PW; Jha M; Kurkalova L; Kling CL
    Ecol Appl; 2011 Jun; 21(4):1068-84. PubMed ID: 21774414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: implications for reducing nutrient loading to the Mississippi River.
    Royer TV; David MB; Gentry LE
    Environ Sci Technol; 2006 Jul; 40(13):4126-31. PubMed ID: 16856726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Nitrogen Load Resulting from Biofuel Mandates.
    Alshawaf M; Douglas E; Ricciardi K
    Int J Environ Res Public Health; 2016 May; 13(5):. PubMed ID: 27171101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water impacts of U.S. biofuels: Insights from an assessment combining economic and biophysical models.
    Teter J; Yeh S; Khanna M; Berndes G
    PLoS One; 2018; 13(9):e0204298. PubMed ID: 30265704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois.
    Panno SV; Hackley KC; Kelly WR; Hwang HH
    J Environ Qual; 2006; 35(2):495-504. PubMed ID: 16455850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potential integrated water quality strategy for the Mississippi River Basin and the Gulf of Mexico.
    Greenhalgh S; Faeth P
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():976-83. PubMed ID: 12805841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation.
    Pellerin BA; Bergamaschi BA; Gilliom RJ; Crawford CG; Saraceno J; Frederick CP; Downing BD; Murphy JC
    Environ Sci Technol; 2014 Nov; 48(21):12612-9. PubMed ID: 25310505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida.
    Prasad R; Hochmuth GJ
    PLoS One; 2016; 11(12):e0167558. PubMed ID: 27907130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing regional hydrology and water quality implications of large-scale biofuel feedstock production in the Upper Mississippi River Basin.
    Demissie Y; Yan E; Wu M
    Environ Sci Technol; 2012 Aug; 46(16):9174-82. PubMed ID: 22827327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen flux and sources in the Mississippi River Basin.
    Goolsby DA; Battaglin WA; Aulenbach BT; Hooper RP
    Sci Total Environ; 2000 Apr; 248(2-3):75-86. PubMed ID: 10805229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spatial analysis of phosphorus in the Mississippi river basin.
    Jacobson LM; David MB; Drinkwater LE
    J Environ Qual; 2011; 40(3):931-41. PubMed ID: 21546679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.