These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26348922)

  • 21. Low-density solvent-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography for determination of warfarin in human plasma.
    Ghambari H; Hadjmohammadi M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 899():66-71. PubMed ID: 22622064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with field-amplified sample injection in capillary electrophoresis for the determination of beta(2)-agonists in bovine urine.
    Us MF; Alshana U; Lubbad I; Göğer NG; Ertaş N
    Electrophoresis; 2013 Mar; 34(6):854-61. PubMed ID: 23335131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction.
    Zhang Y; Lee HK
    J Chromatogr A; 2013 Jan; 1271(1):56-61. PubMed ID: 23237715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.
    Liu Y; Zhao E; Zhu W; Gao H; Zhou Z
    J Chromatogr A; 2009 Feb; 1216(6):885-91. PubMed ID: 19118833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous determination of tetrahydropalmatine and tetrahydroberberine in rat urine using dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.
    Zhang M; Le J; Wen J; Chai Y; Fan G; Hong Z
    J Sep Sci; 2011 Nov; 34(22):3279-86. PubMed ID: 22028314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography.
    Ahmadi-Jouibari T; Fattahi N; Shamsipur M
    J Pharm Biomed Anal; 2014 Jun; 94():145-51. PubMed ID: 24583909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of insecticides in water using in situ halide exchange reaction-assisted ionic liquid dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.
    Li S; Gao H; Zhang J; Li Y; Peng B; Zhou Z
    J Sep Sci; 2011 Nov; 34(22):3178-85. PubMed ID: 22012623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dispersive liquid-liquid microextraction followed by reversed phase-high performance liquid chromatography for the determination of polybrominated diphenyl ethers at trace levels in landfill leachate and environmental water samples.
    Li Y; Wei G; Hu J; Liu X; Zhao X; Wang X
    Anal Chim Acta; 2008 May; 615(1):96-103. PubMed ID: 18440368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extraction and determination of opium alkaloids in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.
    Shamsipur M; Fattahi N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2978-83. PubMed ID: 21925978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey.
    Chen H; Chen H; Ying J; Huang J; Liao L
    Anal Chim Acta; 2009 Jan; 632(1):80-5. PubMed ID: 19100885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecularly imprinted-solid phase extraction combined with simultaneous derivatization and dispersive liquid-liquid microextraction for selective extraction and preconcentration of methamphetamine and ecstasy from urine samples followed by gas chromatography.
    Djozan D; Farajzadeh MA; Sorouraddin SM; Baheri T
    J Chromatogr A; 2012 Jul; 1248():24-31. PubMed ID: 22704883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid analysis of aflatoxin M1 in milk using dispersive liquid-liquid microextraction coupled with ultrahigh pressure liquid chromatography tandem mass spectrometry.
    Campone L; Piccinelli AL; Celano R; Russo M; Rastrelli L
    Anal Bioanal Chem; 2013 Oct; 405(26):8645-52. PubMed ID: 23942569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of dispersive liquid-liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples.
    Fu L; Liu X; Hu J; Zhao X; Wang H; Wang X
    Anal Chim Acta; 2009 Jan; 632(2):289-95. PubMed ID: 19110107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extraction optimization of polycyclic aromatic hydrocarbons by alcoholic-assisted dispersive liquid-liquid microextraction and their determination by HPLC.
    Fatemi MH; Hadjmohammadi MR; Shakeri P; Biparva P
    J Sep Sci; 2012 Jan; 35(1):86-92. PubMed ID: 22125263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-density extraction solvent-based solvent de-emulsification dispersive liquid-liquid microextraction combined with MEKC for detection of chlorophenols in water samples.
    Liang TT; Lv ZH; Jiang TF; Wang YH
    Electrophoresis; 2013 Feb; 34(3):345-52. PubMed ID: 23172394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction coupled with high performance liquid chromatography for sensitive determination of trace celastrol in urine.
    Sun JN; Shi YP; Chen J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(30):3429-33. PubMed ID: 21963272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of ultrasound-enhanced air-assisted liquid-liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples.
    Barfi B; Asghari A; Rajabi M; Goochani Moghadam A; Mirkhani N; Ahmadi F
    J Pharm Biomed Anal; 2015; 111():297-305. PubMed ID: 25916913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-syringe demulsified dispersive liquid-liquid microextraction and high performance liquid chromatography-mass spectrometry for the determination of trace fungicides in environmental water samples.
    Xia Y; Cheng M; Guo F; Wang X; Cheng J
    Anal Chim Acta; 2012 Apr; 724():47-53. PubMed ID: 22483208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of aqueous fullerene aggregates in water by ultrasound-assisted dispersive liquid-liquid microextraction with liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry.
    Chen HC; Ding WH
    J Chromatogr A; 2012 Feb; 1223():15-23. PubMed ID: 22209304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in Parkinson's rat brain microdialysates by ultra high performance liquid chromatography-tandem mass spectrometry.
    He Y; Zhao XE; Zhu S; Wei N; Sun J; Zhou Y; Liu S; Liu Z; Chen G; Suo Y; You J
    J Chromatogr A; 2016 Aug; 1458():70-81. PubMed ID: 27372412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.