These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 26349)
1. Enzymatic hydrolysis of bis-(4-nitrophenyl)phosphate and bis-(4-cyanophenyl)phosphate by rat tissues. Brandt E; Heymann E Biochem Pharmacol; 1978 Mar; 27(5):773-7. PubMed ID: 26349 [No Abstract] [Full Text] [Related]
2. Phosphodiesterases in human tissues. I. Identification and separation of enzymes active on bis(p-nitrophenyl)phosphate. Callahan JW; Lassila EL; Philippart M Biochem Med; 1974 Nov; 11(3):250-61. PubMed ID: 4372994 [No Abstract] [Full Text] [Related]
3. Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate. Rezende AA; Pizauro JM; Ciancaglini P; Leone FA Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):517-22. PubMed ID: 8042997 [TBL] [Abstract][Full Text] [Related]
4. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
5. Bioactivation of bis[p-nitrophenyl]phosphate by phosphoesterases of the earthworm, Lumbricus terrestris. Park SC; Smith TJ; Bisesi MS Drug Chem Toxicol; 1993; 16(1):111-6. PubMed ID: 8382150 [TBL] [Abstract][Full Text] [Related]
6. A lysosomal enzyme involved in diphosphatidylglycerol degradation. Werchola GM; Mellors A Lipids; 1981 Feb; 16(2):149-53. PubMed ID: 6264263 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
8. [P-chiral phosphates--the tools for studying the stereochemistry of enzymatic reactions of the transfer of phosphate or nucleotidyl groups]. Niewiarowski W Postepy Biochem; 1988; 34(1-2):81-114. PubMed ID: 2851135 [No Abstract] [Full Text] [Related]
9. Substrate specificity and stereospecificity of calf spleen phosphodiesterase towards deoxyribonucleosidyl 3'-(4-nitrophenyl phosphates) and phosphorothioates. Niewiarowski W; Uznanski B Eur J Biochem; 1985 Nov; 153(1):145-53. PubMed ID: 2998790 [TBL] [Abstract][Full Text] [Related]
10. Complex kinetics of bis(4-methylumbelliferyl)phosphate and hexadecanoyl(nitrophenyl)phosphorylcholine hydrolysis by purified sphingomyelinase in the presence of Triton X-100. Jones CS; Davidson DJ; Callahan JW Biochim Biophys Acta; 1982 Mar; 701(3):261-8. PubMed ID: 6279158 [TBL] [Abstract][Full Text] [Related]
11. The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis. Hadler KS; Gahan LR; Ollis DL; Schenk G J Inorg Biochem; 2010 Feb; 104(2):211-3. PubMed ID: 19923005 [TBL] [Abstract][Full Text] [Related]
12. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase. Wiersma-Koch H; Sunden F; Herschlag D Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692 [TBL] [Abstract][Full Text] [Related]
13. Bis-(4-methylumbelliferyl) phosphate as a substrate for the surface membrane-associated phosphodiesterase activity of pig platelets. Taylor DG; Williams VM; Crawford N Biochim Biophys Acta; 1977 Mar; 465(3):667-71. PubMed ID: 13836 [TBL] [Abstract][Full Text] [Related]
14. Characterization of phosphohydrolase activity in bovine spleen extracts: identification of a bis(p-nitrophenyl)phosphate-hydrolyzing activity (phosphodiesterase IV) which also acts on adenosine triphosphate. Hawley DM; Hodes MZ; Crisp M; Ellis G; Karn RC; Hodes ME Anal Biochem; 1985 Dec; 151(2):375-80. PubMed ID: 3006537 [TBL] [Abstract][Full Text] [Related]
15. Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca(2+) and phosphate deposition in isolated chicken matrix vesicles. Zhang L; Balcerzak M; Radisson J; Thouverey C; Pikula S; Azzar G; Buchet R J Biol Chem; 2005 Nov; 280(44):37289-96. PubMed ID: 16147995 [TBL] [Abstract][Full Text] [Related]
16. Effects of acetylimidazole on the hydrolysis of fructose diphosphate and p-nitrophenyl phosphate by liver fructose diphosphatase. Kirtley ME; Dix JC Biochemistry; 1974 Oct; 13(21):4469-71. PubMed ID: 4369965 [No Abstract] [Full Text] [Related]
17. Enzymology and genetic regulation of a cyclic nucleotide-binding phosphodiesterase-phosphomonoesterase from Aspergillus nidulans. Polya GM; Brownlee AG; Hynes MJ J Bacteriol; 1975 Nov; 124(2):693-703. PubMed ID: 241743 [TBL] [Abstract][Full Text] [Related]
18. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study. Paul TJ; Schenk G; Prabhakar R J Phys Chem B; 2018 Jun; 122(22):5797-5808. PubMed ID: 29723477 [TBL] [Abstract][Full Text] [Related]
19. Organophosphate inhibitors. The stereospecificity of hydrolysis of methyl n-butyl p-nitrophenyl phosphate by serum phosphotriesterases (EC 3.1.1.2) and by acetylcholinesterases (EC 3.1.1.7). Dudman NP; de Jersey J; Zerner B Biochim Biophys Acta; 1977 Mar; 481(1):127-39. PubMed ID: 191080 [TBL] [Abstract][Full Text] [Related]
20. Determination of phosphodiesterase activity in the presence of phosphomonoesterase using bis-p-nitrophenyl phosphate. Dolapchiev LB; Vassileva RA; Dimitrov D Mol Biol Rep; 1979 Aug; 5(3):185-8. PubMed ID: 226867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]