These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 26349069)
1. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China. Wang Y; Zeng X; Lu Y; Su S; Bai L; Li L; Wu C Environ Pollut; 2015 Dec; 207():79-87. PubMed ID: 26349069 [TBL] [Abstract][Full Text] [Related]
2. [Aging process of arsenite [As(3)]in soils originated from different parent materials.]. Gao X; Wang YN; Zeng XB; Bai LY; Su SM; Wu CX Ying Yong Sheng Tai Xue Bao; 2016 May; 27(5):1453-1460. PubMed ID: 29732806 [TBL] [Abstract][Full Text] [Related]
3. Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils. Wang Y; Zeng X; Lu Y; Bai L; Su S; Wu C Chemosphere; 2017 Nov; 187():404-412. PubMed ID: 28863293 [TBL] [Abstract][Full Text] [Related]
4. Effect of sample pretreatment on the fractionation of arsenic in anoxic soils. Huang G; Chen Z; Sun J; Liu F; Wang J; Zhang Y Environ Sci Pollut Res Int; 2015 Jun; 22(11):8367-74. PubMed ID: 25537285 [TBL] [Abstract][Full Text] [Related]
5. Impact of temperature on the aging mechanisms of arsenic in soils: fractionation and bioaccessibility. Huang G; Chen Z; Wang J; Hou Q; Zhang Y Environ Sci Pollut Res Int; 2016 Mar; 23(5):4594-601. PubMed ID: 26520097 [TBL] [Abstract][Full Text] [Related]
6. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
7. Bioaccessible and non-bioaccessible fractions of soil arsenic. Whitacre SD; Basta NT; Dayton EA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113 [TBL] [Abstract][Full Text] [Related]
8. Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure. Nóvoa-Muñoz JC; Queijeiro JM; Blanco-Ward D; Alvarez-Olleros C; García-Rodeja E; Martínez-Cortizas A Sci Total Environ; 2007 May; 378(1-2):18-22. PubMed ID: 17289117 [TBL] [Abstract][Full Text] [Related]
9. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Yu HY; Wang X; Li F; Li B; Liu C; Wang Q; Lei J Environ Pollut; 2017 May; 224():136-147. PubMed ID: 28202263 [TBL] [Abstract][Full Text] [Related]
10. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile. Ascar L; Ahumada I; Richter P Chemosphere; 2008 Jan; 70(7):1211-7. PubMed ID: 17889255 [TBL] [Abstract][Full Text] [Related]
11. Effect of aging on arsenic and lead fractionation and availability in soils: coupling sequential extractions with diffusive gradients in thin-films technique. Liang S; Guan DX; Ren JH; Zhang M; Luo J; Ma LQ J Hazard Mater; 2014 May; 273():272-9. PubMed ID: 24751493 [TBL] [Abstract][Full Text] [Related]
12. Comparison of DGT with traditional extraction methods for assessing arsenic bioavailability to Brassica chinensis in different soils. Dai Y; Nasir M; Zhang Y; Gao J; Lv Y; Lv J Chemosphere; 2018 Jan; 191():183-189. PubMed ID: 29032263 [TBL] [Abstract][Full Text] [Related]
13. Adsorption, oxidation, and bioaccessibility of As(III) in soils. Yang JK; Barnett MO; Zhuang J; Fendorf SE; Jardine PM Environ Sci Technol; 2005 Sep; 39(18):7102-10. PubMed ID: 16201635 [TBL] [Abstract][Full Text] [Related]
14. Aging of exogenous arsenic in flooded paddy soils: Characteristics and predictive models. Zang X; Zhou Z; Zhang T; Wang X; Ding C Environ Pollut; 2021 Apr; 274():116561. PubMed ID: 33529895 [TBL] [Abstract][Full Text] [Related]
15. Adsorption, sequestration, and bioaccessibility of As(V) in soils. Yang JK; Barnett MO; Jardine PM; Basta NT; Casteel SW Environ Sci Technol; 2002 Nov; 36(21):4562-9. PubMed ID: 12433165 [TBL] [Abstract][Full Text] [Related]
16. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study. Datta R; Sarkar D; Sharma S; Sand K Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204 [TBL] [Abstract][Full Text] [Related]
17. [Forms and bio-availabilities of exogenous arsenic in purple soils]. Miao J; He F; Wei S; Liu G Ying Yong Sheng Tai Xue Bao; 2005 May; 16(5):899-902. PubMed ID: 16110667 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils. Lee JC; Kim EJ; Baek K Chemosphere; 2017 Feb; 168():1439-1446. PubMed ID: 27923505 [TBL] [Abstract][Full Text] [Related]
19. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
20. Impacts of silicon addition on arsenic fractionation in soils and arsenic speciation in Panax notoginseng planted in soils contaminated with high levels of arsenic. Yang Y; Zhang A; Chen Y; Liu J; Cao H Ecotoxicol Environ Saf; 2018 Oct; 162():400-407. PubMed ID: 30015185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]