These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26349214)

  • 21. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound.
    Epping WJ; Eggermont JJ
    Hear Res; 1986; 24(1):55-72. PubMed ID: 3489703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Analysis of single unit activity evoked by tones amplitude-modulated by low-frequency noise in frog medulla].
    Bibikov NG; Nizamov SV
    Biofizika; 2009; 54(5):921-34. PubMed ID: 19894635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contralateral inhibitory and excitatory frequency response maps in the mammalian cochlear nucleus.
    Ingham NJ; Bleeck S; Winter IM
    Eur J Neurosci; 2006 Nov; 24(9):2515-29. PubMed ID: 17100840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auditory streaming of amplitude-modulated sounds in the songbird forebrain.
    Itatani N; Klump GM
    J Neurophysiol; 2009 Jun; 101(6):3212-25. PubMed ID: 19357341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gamma-aminobutyric acidergic and glycinergic inputs shape coding of amplitude modulation in the chinchilla cochlear nucleus.
    Backoff PM; Shadduck Palombi P; Caspary DM
    Hear Res; 1999 Aug; 134(1-2):77-88. PubMed ID: 10452378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addition of noise enhances neural synchrony to amplitude-modulated sounds in the frog's midbrain.
    Bibikov NG
    Hear Res; 2002 Nov; 173(1-2):21-8. PubMed ID: 12372632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane properties that shape the auditory code in three nuclei of the central nervous system.
    Schwarz DW; Tennigkeit F; Adam T; Finlayson P; Puil E
    J Otolaryngol; 1998 Dec; 27(6):311-7. PubMed ID: 9857314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral edge sensitivity in neural circuits of the dorsal cochlear nucleus.
    Reiss LA; Young ED
    J Neurosci; 2005 Apr; 25(14):3680-91. PubMed ID: 15814799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise.
    Mulders WH; Seluakumaran K; Robertson D
    Eur J Neurosci; 2008 Feb; 27(3):702-14. PubMed ID: 18279322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal processing and adaptation in the songbird auditory forebrain.
    Nagel KI; Doupe AJ
    Neuron; 2006 Sep; 51(6):845-59. PubMed ID: 16982428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of adaptation on neural sensitivity to temporal characteristics of sound in the dorsal medullary nucleus and torus semicircularis of the grassfrog.
    Epping WJ
    Hear Res; 1990 Apr; 45(1-2):1-13. PubMed ID: 2345109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus.
    Fontaine B; MacLeod KM; Lubejko ST; Steinberg LJ; Köppl C; Peña JL
    J Neurophysiol; 2014 Jul; 112(2):430-45. PubMed ID: 24790170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular responses of the rat cochlear nucleus to sound and its role in temporal coding.
    Paolini AG; Clark GM; Burkitt AN
    Neuroreport; 1997 Oct; 8(15):3415-21. PubMed ID: 9351683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms.
    Wang X; Sachs MB
    J Neurophysiol; 1995 Apr; 73(4):1600-16. PubMed ID: 7643170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The responses of single units in the inferior colliculus of the guinea pig to damped and ramped sinusoids.
    Neuert V; Pressnitzer D; Patterson RD; Winter IM
    Hear Res; 2001 Sep; 159(1-2):36-52. PubMed ID: 11520633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The psychophysics and physiology of comodulation masking release.
    Verhey JL; Pressnitzer D; Winter IM
    Exp Brain Res; 2003 Dec; 153(4):405-17. PubMed ID: 13680049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals.
    Dolphin WF; Mountain DC
    Hear Res; 1992 Feb; 58(1):70-8. PubMed ID: 1559908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of neurons in the dorsal medullary nucleus of the grassfrog to spectral and temporal characteristics of sound.
    van Stokkum IH
    Hear Res; 1987; 29(2-3):223-35. PubMed ID: 3497912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coding of time-varying sounds in the cochlear nucleus.
    Møller AR
    Audiology; 1978; 17(5):446-68. PubMed ID: 697654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.