These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26349309)

  • 41. Multifaceted roles of environmental factors toward dental implant performance: Observations from clinical retrievals and in vitro testing.
    Sridhar S; Wang F; Wilson TG; Valderrama P; Palmer K; Rodrigues DC
    Dent Mater; 2018 Nov; 34(11):e265-e279. PubMed ID: 30220507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oral bacterial attachment to titanium surfaces: a scanning electron microscopy study.
    Wu-Yuan CD; Eganhouse KJ; Keller JC; Walters KS
    J Oral Implantol; 1995; 21(3):207-13. PubMed ID: 8699514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation.
    Xing R; Lyngstadaas SP; Ellingsen JE; Taxt-Lamolle S; Haugen HJ
    Clin Oral Implants Res; 2015 Jun; 26(6):649-56. PubMed ID: 25906328
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.
    Shim JW; Bae IH; Park DS; Lee SY; Jang EJ; Lim KS; Park JK; Kim JH; Jeong MH
    J Biomater Appl; 2018 Mar; 32(8):1083-1089. PubMed ID: 29256322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of chloride formed on anodized titanium surfaces against an oral microorganism.
    Deng JY; Arimoto T; Shibata Y; Omori S; Miyazaki T; Igarashi T
    J Biomater Appl; 2010 Aug; 25(2):179-89. PubMed ID: 19923142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma.
    Idlibi AN; Al-Marrawi F; Hannig M; Lehmann A; Rueppell A; Schindler A; Jentsch H; Rupf S
    Biofouling; 2013; 29(4):369-79. PubMed ID: 23574038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology.
    Rupf S; Idlibi AN; Marrawi FA; Hannig M; Schubert A; von Mueller L; Spitzer W; Holtmann H; Lehmann A; Rueppell A; Schindler A
    PLoS One; 2011; 6(10):e25893. PubMed ID: 22016784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants.
    Zhu Y; Cao H; Qiao S; Wang M; Gu Y; Luo H; Meng F; Liu X; Lai H
    Int J Nanomedicine; 2015; 10():6659-74. PubMed ID: 26604743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphometric Changes Induced by Cold Argon Plasma Treatment on Osteoblasts Grown on Different Dental Implant Surfaces.
    Canullo L; Genova T; Mandracci P; Mussano F; Abundo R; Fiorellini JP
    Int J Periodontics Restorative Dent; 2017; 37(4):541-548. PubMed ID: 28609500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-species biofilm model onto plasma-treated titanium implant surface.
    Matos AO; Ricomini-Filho AP; Beline T; Ogawa ES; Costa-Oliveira BE; de Almeida AB; Nociti Junior FH; Rangel EC; da Cruz NC; Sukotjo C; Mathew MT; Barão VAR
    Colloids Surf B Biointerfaces; 2017 Apr; 152():354-366. PubMed ID: 28131960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-thermal atmospheric pressure plasma treatment increases hydrophilicity and promotes cell growth on titanium alloys in vitro.
    Jo WL; Lim YW; Kwon SY; Bahk JH; Kim J; Shin T; Kim Y
    Sci Rep; 2023 Sep; 13(1):14792. PubMed ID: 37684351
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced antibacterial efficacy of selective laser melting titanium surface with nanophase calcium phosphate embedded to TiO
    Hu X; Xu R; Yu X; Chen J; Wan S; Ouyang J; Deng F
    Biomed Mater; 2018 May; 13(4):045015. PubMed ID: 29714709
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization.
    Buxadera-Palomero J; Canal C; Torrent-Camarero S; Garrido B; Javier Gil F; Rodríguez D
    Biointerphases; 2015 Jun; 10(2):029505. PubMed ID: 25766480
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Effects of Non-Thermal Atmospheric Pressure Plasma treated Titanium Surface on Behaviors of Oral Soft Tissue Cells.
    Jeong WS; Kwon JS; Choi EH; Kim KM
    Sci Rep; 2018 Oct; 8(1):15963. PubMed ID: 30374034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen plasma functionalization of parylene C coating for implants surface: nanotopography and active sites for drug anchoring.
    Gołda M; Brzychczy-Włoch M; Faryna M; Engvall K; Kotarba A
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4221-7. PubMed ID: 23910336
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photofunctionalization and non-thermal plasma activation of titanium surfaces.
    Henningsen A; Smeets R; Hartjen P; Heinrich O; Heuberger R; Heiland M; Precht C; Cacaci C
    Clin Oral Investig; 2018 Mar; 22(2):1045-1054. PubMed ID: 28730456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Plasma Oxidation-Treated TiOx Film on Early Osseointegration.
    Jiang H; Zhang T; Zhou W; Lin Z; Liu Z
    Int J Oral Maxillofac Implants; 2018; 33(5):1011-1018. PubMed ID: 30231086
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological and Physicochemical Characteristics of 2 Different Hydrophilic Surfaces Created by Saline-Storage and Ultraviolet Treatment.
    Ghassemi A; Ishijima M; Hasegawa M; Mohammadzadeh Rezaei N; Nakhaei K; Sekiya T; Torii Y; Hirota M; Park W; Miley DD; Ogawa T
    Implant Dent; 2018 Aug; 27(4):405-414. PubMed ID: 29851661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoadhesion of Staphylococcus aureus onto Titanium Implant Surfaces.
    Aguayo S; Donos N; Spratt D; Bozec L
    J Dent Res; 2015 Aug; 94(8):1078-84. PubMed ID: 26130256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removing biofilms from stainless steel without changing surface properties relevant for bacterial attachment.
    Huttenlochner K; Müller-Renno C; Ziegler C; Merz R; Merz B; Kopnarski M; Chodorski J; Schlegel C; Ulber R
    Biointerphases; 2017 Apr; 12(2):02C404. PubMed ID: 28446023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.