These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality. Sinha S; Singh R; Chaurasia AK; Nigam S J Hazard Mater; 2016 Apr; 306():386-394. PubMed ID: 26826964 [TBL] [Abstract][Full Text] [Related]
4. Investigation of Eucalyptus camaldulensis and Tamarix aphylla species' capacities for methylene blue removal in wastewater and heavy metal remediation in soil. Ardakani FP; Kalantari S; Shirmardi M; Tazeh M Environ Monit Assess; 2024 Jul; 196(8):754. PubMed ID: 39031225 [TBL] [Abstract][Full Text] [Related]
5. Use of Chlorella vulgaris for bioremediation of textile wastewater. Lim SL; Chu WL; Phang SM Bioresour Technol; 2010 Oct; 101(19):7314-22. PubMed ID: 20547057 [TBL] [Abstract][Full Text] [Related]
6. Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. Moghazy RM; Labena A; Husien S Int J Biol Macromol; 2019 Aug; 134():330-343. PubMed ID: 31054306 [TBL] [Abstract][Full Text] [Related]
7. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. Ozer A; Dursun G J Hazard Mater; 2007 Jul; 146(1-2):262-9. PubMed ID: 17204366 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium, kinetic and thermodynamic studies on the biosorption of reactive acid dye on Enteromorpha flexuosa and Gracilaria corticata. Sivasamy A; Nethaji S; Nisha LL Environ Sci Pollut Res Int; 2012 Jun; 19(5):1687-95. PubMed ID: 22161297 [TBL] [Abstract][Full Text] [Related]
9. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour. Vilar VJ; Botelho CM; Boaventura RA J Hazard Mater; 2007 Aug; 147(1-2):120-32. PubMed ID: 17240055 [TBL] [Abstract][Full Text] [Related]
10. Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Turp SM; Turp GA; Ekinci N; Özdemir S Water Sci Technol; 2020 Aug; 82(3):513-523. PubMed ID: 32960796 [TBL] [Abstract][Full Text] [Related]
11. Removal of malachite green and mixed dyes from aqueous and textile effluents using acclimatized and sonicated microalgal ( Getachew D; Suresh A; Kamaraj M; Ayele A; Benor S Int J Phytoremediation; 2022; 24(8):881-892. PubMed ID: 34618651 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of basic dye from wastewater using raw and activated red mud. Coruh S; Geyikçi F; Ergun ON Environ Technol; 2011; 32(11-12):1183-93. PubMed ID: 21970160 [TBL] [Abstract][Full Text] [Related]
13. Impact of pH on Pollutional Parameters of Textile Industry Wastewater with Use of Chlorella pyrenoidosa at Lab-Scale: A Green Approach. Majhi PK; Kothari R; Arora NK; Pandey VC; Tyagi VV Bull Environ Contam Toxicol; 2022 Mar; 108(3):485-490. PubMed ID: 33950268 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient biosorptive removal of lead from industrial effluent. Sao K; Pandey M; Pandey PK; Khan F Environ Sci Pollut Res Int; 2017 Aug; 24(22):18410-18420. PubMed ID: 28643279 [TBL] [Abstract][Full Text] [Related]
15. Production of lipid-containing microalgal biomass and simultaneous removal of nitrate and phosphate from synthetic wastewater. Prasad MSV; Varma AK; Kumari P; Mondal P Environ Technol; 2018 Mar; 39(5):669-681. PubMed ID: 28327057 [TBL] [Abstract][Full Text] [Related]
16. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Hameed BH; Ahmad AA J Hazard Mater; 2009 May; 164(2-3):870-5. PubMed ID: 18838221 [TBL] [Abstract][Full Text] [Related]
17. Sugarcane Bagasse as an Efficient Biosorbent for Methylene Blue Removal: Kinetics, Isotherms and Thermodynamics. Andrade Siqueira TC; Zanette da Silva I; Rubio AJ; Bergamasco R; Gasparotto F; Paccola EAS; Yamaguchi NU Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31947663 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of magnetite-based nanocomposites for effective removal of brilliant green dye from wastewater. Imran M; Islam AU; Tariq MA; Siddique MH; Shah NS; Khan ZUH; Amjad M; Din SU; Shah GM; Naeem MA; Nadeem M; Nawaz M; Rizwan M Environ Sci Pollut Res Int; 2019 Aug; 26(24):24489-24502. PubMed ID: 31230248 [TBL] [Abstract][Full Text] [Related]
19. Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Hamdy A; Mostafa MK; Nasr M Water Sci Technol; 2018 Aug; 78(1-2):367-378. PubMed ID: 30101772 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Fito J; Abewaa M; Mengistu A; Angassa K; Ambaye AD; Moyo W; Nkambule T Sci Rep; 2023 Apr; 13(1):5427. PubMed ID: 37012298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]