These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26349465)

  • 1. Schlieren visualization of fluid dynamics effects in direct analysis in real time mass spectrometry.
    Curtis M; Keelor JD; Jones CM; Pittman JJ; Jones PR; Sparkman OD; Fernández FM
    Rapid Commun Mass Spectrom; 2015 Mar; 29(5):431-9. PubMed ID: 26349465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient analysis by thermal desorption atmospheric pressure photoionization.
    Jorabchi K; Hanold K; Syage J
    Anal Bioanal Chem; 2013 Sep; 405(22):7011-8. PubMed ID: 23180079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission mode direct analysis in real time mass spectrometry for fast untargeted metabolic fingerprinting.
    Jones CM; Fernández FM
    Rapid Commun Mass Spectrom; 2013 Jun; 27(12):1311-8. PubMed ID: 23681808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopant-assisted direct analysis in real time mass spectrometry with argon gas.
    Cody RB; Dane AJ
    Rapid Commun Mass Spectrom; 2016 May; 30(10):1181-1189. PubMed ID: 28328019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time in situ chemical characterization of submicrometer organic particles using direct analysis in real time-mass spectrometry.
    Nah T; Chan M; Leone SR; Wilson KR
    Anal Chem; 2013 Feb; 85(4):2087-95. PubMed ID: 23330910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time in situ chemical characterization of sub-micron organic aerosols using Direct Analysis in Real Time mass spectrometry (DART-MS): the effect of aerosol size and volatility.
    Chan MN; Nah T; Wilson KR
    Analyst; 2013 Jul; 138(13):3749-57. PubMed ID: 23687648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved desorption/ionization and ion transmission in surface scanning by direct analysis in real time mass spectrometry.
    Häbe TT; Morlock GE
    Rapid Commun Mass Spectrom; 2016 Jan; 30(2):321-32. PubMed ID: 26689161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis.
    Sysoev A; Adamov A; Viidanoja J; Ketola RA; Kostiainen R; Kotiaho T
    Rapid Commun Mass Spectrom; 2004; 18(24):3131-9. PubMed ID: 15565719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of confined direct analysis in real time mass spectrometry (DART-MS).
    Sisco E; Staymates ME; Forbes TP
    Analyst; 2020 Apr; 145(7):2743-2750. PubMed ID: 32090225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-quantitative analysis of contaminants in soils by direct analysis in real time (DART) mass spectrometry.
    Grange AH
    Rapid Commun Mass Spectrom; 2013 Jan; 27(2):305-18. PubMed ID: 23239378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.
    Storey AP; Zeiri OM; Ray SJ; Hieftje GM
    J Am Soc Mass Spectrom; 2017 Feb; 28(2):263-269. PubMed ID: 27757823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative surface scanning by Direct Analysis in Real Time mass spectrometry.
    Häbe TT; Morlock GE
    Rapid Commun Mass Spectrom; 2015 Mar; 29(6):474-84. PubMed ID: 26160413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on the coupling of high-performance liquid chromatography to direct analysis in real time mass spectrometry.
    Eberherr W; Buchberger W; Hertsens R; Klampfl CW
    Anal Chem; 2010 Jul; 82(13):5792-6. PubMed ID: 20515070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry.
    Maleknia SD; Vail TM; Cody RB; Sparkman DO; Bell TL; Adams MA
    Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2241-6. PubMed ID: 19551840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations and experimental investigation of atmospheric transport in an ambient metastable-induced chemical ionization source.
    Harris GA; Fernández FM
    Anal Chem; 2009 Jan; 81(1):322-9. PubMed ID: 19117459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing direct analysis in real-time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging.
    Ackerman LK; Noonan GO; Begley TH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Dec; 26(12):1611-8. PubMed ID: 19753496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some new features of Direct Analysis in Real Time mass spectrometry utilizing the desorption at an angle option.
    Chernetsova ES; Revelsky AI; Morlock GE
    Rapid Commun Mass Spectrom; 2011 Aug; 25(16):2275-82. PubMed ID: 21766371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen direct analysis in real time time-of-flight mass spectrometry (N
    Song L; Chuah WC; Quick JD; Remsen E; Bartmess JE
    Rapid Commun Mass Spectrom; 2020 Jan; 34(1):e8558. PubMed ID: 31429149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.
    Pfeuffer KP; Ray SJ; Hieftje GM
    J Am Soc Mass Spectrom; 2014 May; 25(5):800-8. PubMed ID: 24658804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of Ambient Mass Spectrometry with the Use of Schlieren Photography.
    Winter GT; Wilhide JA; LaCourse WR
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27404400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.