BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26349496)

  • 21. Surfactant systems: microemulsions and vesicles as vehicles for drug delivery.
    Lawrence MJ
    Eur J Drug Metab Pharmacokinet; 1994; 19(3):257-69. PubMed ID: 7867669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.
    Chen Y; Tuo J; Huang H; Liu D; You X; Mai J; Song J; Xie Y; Wu C; Hu H
    Int J Pharm; 2015 Jun; 487(1-2):17-24. PubMed ID: 25841571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions.
    Li P; Ghosh A; Wagner RF; Krill S; Joshi YM; Serajuddin AT
    Int J Pharm; 2005 Jan; 288(1):27-34. PubMed ID: 15607255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microemulsions as transdermal drug delivery vehicles.
    Kogan A; Garti N
    Adv Colloid Interface Sci; 2006 Nov; 123-126():369-85. PubMed ID: 16843424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Clotrimazole Multiple W/O/W Emulsions as Vehicles for Drug Delivery: Effects of Additives on Emulsion Stability.
    Suñer J; Calpena AC; Clares B; Cañadas C; Halbaut L
    AAPS PharmSciTech; 2017 Feb; 18(2):539-550. PubMed ID: 27126008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability, cutaneous delivery, and antioxidant potential of a lipoic acid and α-tocopherol codrug incorporated in microemulsions.
    Thomas S; Vieira CS; Hass MA; Lopes LB
    J Pharm Sci; 2014 Aug; 103(8):2530-8. PubMed ID: 24961388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of methotrexate.
    Abdelbary G; Haider M
    Pharm Dev Technol; 2013; 18(5):1159-68. PubMed ID: 21958084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A critical appraisal of microemulsions for drug delivery: part I.
    Sapra B; Thatai P; Bhandari S; Sood J; Jindal M; Tiwary A
    Ther Deliv; 2013 Dec; 4(12):1547-64. PubMed ID: 24304251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced ocular bioavailability of fluconazole from niosomal gels and microemulsions: formulation, optimization, and in vitro-in vivo evaluation.
    Soliman OAE; Mohamed EA; Khatera NAA
    Pharm Dev Technol; 2019 Jan; 24(1):48-62. PubMed ID: 29210317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Niosomes vs microemulsions: new carriers for topical delivery of Capsaicin.
    Tavano L; Alfano P; Muzzalupo R; de Cindio B
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):333-9. PubMed ID: 21684725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water-in-oil microemulsions versus emulsions as carriers of hydroxytyrosol: an in vitro gastrointestinal lipolysis study using the pHstat technique.
    Chatzidaki MD; Mateos-Diaz E; Leal-Calderon F; Xenakis A; Carrière F
    Food Funct; 2016 May; 7(5):2258-69. PubMed ID: 27164003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of microemuslsions in advanced drug delivery.
    Sharma AK; Garg T; Goyal AK; Rath G
    Artif Cells Nanomed Biotechnol; 2016 Jun; 44(4):1177-85. PubMed ID: 25711493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Non-innocent Magnesium Organoclay-Based Drug Vehicle for Improving the Cancer Therapy Effect of Methotrexate.
    Li J; Qiao S; Tan G; Yu Y; Liu D; Pan W
    AAPS PharmSciTech; 2019 Sep; 20(8):309. PubMed ID: 31520191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions.
    Alvarez-Figueroa MJ; Blanco-Méndez J
    Int J Pharm; 2001 Mar; 215(1-2):57-65. PubMed ID: 11250092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies.
    Kantarci G; Ozgüney I; Karasulu HY; Arzik S; Güneri T
    AAPS PharmSciTech; 2007 Nov; 8(4):E91. PubMed ID: 18181551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microemulsion systems containing bioactive natural oils: an overview on the state of the art.
    Xavier-Junior FH; Vauthier C; Morais AR; Alencar EN; Egito ES
    Drug Dev Ind Pharm; 2017 May; 43(5):700-714. PubMed ID: 27622950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.
    Tahir N; Madni A; Balasubramanian V; Rehman M; Correia A; Kashif PM; Mäkilä E; Salonen J; Santos HA
    Int J Pharm; 2017 Nov; 533(1):156-168. PubMed ID: 28963013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies.
    Barradas TN; Senna JP; Cardoso SA; Nicoli S; Padula C; Santi P; Rossi F; de Holanda E Silva KG; Mansur CRE
    Eur J Pharm Biopharm; 2017 Jul; 116():38-50. PubMed ID: 27867112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of microemulsions for ocular delivery.
    Gautam N; Kesavan K
    Ther Deliv; 2017 Mar; 8(5):313-330. PubMed ID: 28361605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.