These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26350051)

  • 21. Strong Coupling Dynamics of a Quantum Emitter near a Topological Insulator Nanoparticle.
    Thanopulos I; Yannopapas V; Paspalakis E
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity.
    Hughes S
    Phys Rev Lett; 2005 Jun; 94(22):227402. PubMed ID: 16090437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entanglement between a Diamond Spin Qubit and a Photonic Time-Bin Qubit at Telecom Wavelength.
    Tchebotareva A; Hermans SLN; Humphreys PC; Voigt D; Harmsma PJ; Cheng LK; Verlaan AL; Dijkhuizen N; de Jong W; Dréau A; Hanson R
    Phys Rev Lett; 2019 Aug; 123(6):063601. PubMed ID: 31491180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entanglement generation by strong coupling between surface lattice resonance and exciton in an Al nanoarray-coated WS
    Shi X; Wang Z; Xiao J; Li L; Wei S; Guo Z; Wang Y; Wang W
    Discov Nano; 2023 Mar; 18(1):32. PubMed ID: 36877371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entanglement Dynamics Induced by a Squeezed Coherent Cavity Coupled Nonlinearly with a Qubit and Filled with a Kerr-Like Medium.
    Mohamed AA; Eleuch H
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33919469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semideterministic Entanglement between a Single Photon and an Atomic Ensemble.
    Li J; Zhou MT; Yang CW; Sun PF; Liu JL; Bao XH; Pan JW
    Phys Rev Lett; 2019 Oct; 123(14):140504. PubMed ID: 31702192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
    De Greve K; Yu L; McMahon PL; Pelc JS; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y
    Nature; 2012 Nov; 491(7424):421-5. PubMed ID: 23151585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling collective spontaneous emission with plasmonic waveguides.
    Li Y; Argyropoulos C
    Opt Express; 2016 Nov; 24(23):26696-26708. PubMed ID: 27857400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip.
    Silverstone JW; Santagati R; Bonneau D; Strain MJ; Sorel M; O'Brien JL; Thompson MG
    Nat Commun; 2015 Aug; 6():7948. PubMed ID: 26245267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafast coherent energy transfer with high efficiency based on plasmonic nanostructures.
    Ren J; Chen T; Wang B; Zhang X
    J Chem Phys; 2017 Apr; 146(14):144101. PubMed ID: 28411604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photonic Which-Path Entangler Based on Longitudinal Cavity-Qubit Coupling.
    McIntyre ZM; Coish WA
    Phys Rev Lett; 2024 Mar; 132(9):093603. PubMed ID: 38489640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides.
    Gonzalez-Tudela A; Martin-Cano D; Moreno E; Martin-Moreno L; Tejedor C; Garcia-Vidal FJ
    Phys Rev Lett; 2011 Jan; 106(2):020501. PubMed ID: 21405211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle.
    Li JY; Li W; Liu J; Zhong J; Liu R; Chen H; Wang XH
    Nano Lett; 2022 Jun; 22(12):4686-4693. PubMed ID: 35638870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of quantum dots coupled to plasmons and optical cavities.
    Westmoreland DE; McClelland KP; Perez KA; Schwabacher JC; Zhang Z; Weiss EA
    J Chem Phys; 2019 Dec; 151(21):210901. PubMed ID: 31822081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
    Li Q; Wei H; Xu H
    Nano Lett; 2015 Dec; 15(12):8181-7. PubMed ID: 26583200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit.
    Bitton O; Haran G
    Acc Chem Res; 2022 Jun; 55(12):1659-1668. PubMed ID: 35649040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Demonstration of a stable atom-photon entanglement source for quantum repeaters.
    Chen S; Chen YA; Zhao B; Yuan ZS; Schmiedmayer J; Pan JW
    Phys Rev Lett; 2007 Nov; 99(18):180505. PubMed ID: 17995391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-Qubit Local Fisher Information Correlation beyond Entanglement in a Nonlinear Generalized Cavity with an Intrinsic Decoherence.
    Mohamed AA; Khalil EM; Yassen MF; Eleuch H
    Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33800739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deterministic Generation of Large-Scale Entangled Photonic Cluster State from Interacting Solid State Emitters.
    Gimeno-Segovia M; Rudolph T; Economou SE
    Phys Rev Lett; 2019 Aug; 123(7):070501. PubMed ID: 31491104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.