BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26350098)

  • 21. Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein.
    Wong C; Xiong LW; Horiuchi M; Raymond L; Wehrly K; Chesebro B; Caughey B
    EMBO J; 2001 Feb; 20(3):377-86. PubMed ID: 11157745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein.
    Zhang M; Zhang H; Yao H; Guo C; Lin D
    Acta Biochim Biophys Sin (Shanghai); 2019 Dec; 51(12):1223-1232. PubMed ID: 31735962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecosystems supporting clusters of sporadic TSEs demonstrate excesses of the radical-generating divalent cation manganese and deficiencies of antioxidant co factors Cu, Se, Fe, Zn. Does a foreign cation substitution at prion protein's Cu domain initiate TSE?
    Purdey M
    Med Hypotheses; 2000 Feb; 54(2):278-306. PubMed ID: 10790765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural studies on the folded domain of the human prion protein bound to the Fab fragment of the antibody POM1.
    Baral PK; Wieland B; Swayampakula M; Polymenidou M; Rahman MH; Kav NN; Aguzzi A; James MN
    Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1501-12. PubMed ID: 23090399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prion protein fate governed by metal binding.
    Tsenkova RN; Iordanova IK; Toyoda K; Brown DR
    Biochem Biophys Res Commun; 2004 Dec; 325(3):1005-12. PubMed ID: 15541389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation of native prion protein (PrP) glycoforms by copper-binding using immobilized metal affinity chromatography (IMAC).
    Müller H; Strom A; Hunsmann G; Stuke AW
    Biochem J; 2005 May; 388(Pt 1):371-8. PubMed ID: 15658935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hot spots in prion protein for pathogenic conversion.
    Kuwata K; Nishida N; Matsumoto T; Kamatari YO; Hosokawa-Muto J; Kodama K; Nakamura HK; Kimura K; Kawasaki M; Takakura Y; Shirabe S; Takata J; Kataoka Y; Katamine S
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):11921-6. PubMed ID: 17616582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Does an ultra violet photooxidation of the manganese-loaded/copper-depleted prion protein in the retina initiate the pathogenesis of TSE?
    Purdey M
    Med Hypotheses; 2001 Jul; 57(1):29-45. PubMed ID: 11421622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling the details of prion (con)formation(s): recent advances by mass spectrometry.
    Principe S; Maras B; Schininà ME; Pocchiari M; Cardone F
    Curr Opin Drug Discov Devel; 2008 Sep; 11(5):697-707. PubMed ID: 18729021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations.
    Jones CE; Klewpatinond M; Abdelraheim SR; Brown DR; Viles JH
    J Mol Biol; 2005 Mar; 346(5):1393-407. PubMed ID: 15713489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The binding of the molecular chaperone Hsc70 to the prion protein PrP is modulated by pH and copper.
    Wilkins S; Choglay AA; Chapple JP; van der Spuy J; Rhie A; Birkett CR; Cheetham ME
    Int J Biochem Cell Biol; 2010 Jul; 42(7):1226-32. PubMed ID: 20434583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular insights into the critical role of gallate moiety of green tea catechins in modulating prion fibrillation, cellular internalization, and neuronal toxicity.
    Admane N; Srivastava A; Jamal S; Sharma R; Kundu B; Grover A
    Int J Biol Macromol; 2022 Dec; 223(Pt A):755-765. PubMed ID: 36368361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique Properties of the Rabbit Prion Protein Oligomer.
    Yu Z; Huang P; Yu Y; Zheng Z; Huang Z; Guo C; Lin D
    PLoS One; 2016; 11(8):e0160874. PubMed ID: 27529173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interaction of humic substances with the human prion protein fragment 90-231 affects its protease K resistance and cell internalization.
    Corsaro A; Anselmi C; Polano M; Aceto A; Florio T; De Nobili M
    J Biol Regul Homeost Agents; 2010; 24(1):27-39. PubMed ID: 20385069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micellar environments induce structuring of the N-terminal tail of the prion protein.
    Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L
    Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Consequences of Copper Binding to the Prion Protein.
    Salzano G; Giachin G; Legname G
    Cells; 2019 Jul; 8(8):. PubMed ID: 31349611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential involvement of copper and thiol-disulphide interchange in prion proteins' conformational conversion.
    Feughelman M; Willis BK
    Med Hypotheses; 2002 Sep; 59(3):321-4. PubMed ID: 12208161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: insights from circular dichroism.
    Garnett AP; Viles JH
    J Biol Chem; 2003 Feb; 278(9):6795-802. PubMed ID: 12454014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural rearrangements at physiological pH: nuclear magnetic resonance insights from the V210I human prion protein mutant.
    Biljan I; Ilc G; Giachin G; Plavec J; Legname G
    Biochemistry; 2012 Sep; 51(38):7465-74. PubMed ID: 22947063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.