BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26350822)

  • 1. Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes.
    Zapata-Martínez J; Medina MF; Gramajo-Bühler MC; Sánchez-Toranzo G
    Zygote; 2016 Aug; 24(4):495-501. PubMed ID: 26350822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical activation in Rhinella arenarum oocytes: effect of dehydroleucodine (DhL) and its hydrogenated derivative (2H-DhL).
    Medina MF; Bühler MI; Sánchez-Toranzo G
    Zygote; 2015 Dec; 23(6):924-32. PubMed ID: 25424172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the dehydroleucodine alpha-methylene-gamma-lactone function in GVBD inhibition in Bufo arenarum oocytes.
    Sánchez Toranzo G; López LA; Martínez JZ; Bühler MC; Bühler MI
    Zygote; 2010 Feb; 18(1):41-9. PubMed ID: 19664309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of phospholipase activity in Rhinella arenarum sperm extract capable of inducing oocyte activation.
    Bonilla F; Minahk C; Ajmat MT; Toranzo GS; Bühler MI
    Zygote; 2014 Nov; 22(4):483-95. PubMed ID: 24016596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of PLA2, COX and LOX in Rhinella arenarum oocyte maturation.
    Ortiz ME; Bühler MI; Zelarayán LI
    Zygote; 2014 Nov; 22(4):440-5. PubMed ID: 23443017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dehydroleucodine on meiosis reinitiation in Bufo arenarum denuded oocytes.
    Sánchez Toranzo G; Giordano OS; López LA; Bühler MI
    Zygote; 2007 May; 15(2):183-7. PubMed ID: 17462111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of guaianolides in the meiosis reinitiation of amphibian oocytes.
    Zapata-Martínez J; Sánchez-Toranzo G; Chaín F; Catalán CA; Bühler MI
    Zygote; 2017 Feb; 25(1):10-16. PubMed ID: 27806737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Participation of IP3R, RyR and L-type Ca2+ channel in the nuclear maturation of Rhinella arenarum oocytes.
    Toranzo GS; Bühler MC; Bühler MI
    Zygote; 2014 May; 22(2):110-23. PubMed ID: 22805181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different types of sesquiterpene lactones on the maturation of Rhinella arenarum oocytes.
    Sánchez-Toranzo G; Zapata-Martínez J; Catalán C; Bühler MI
    Zygote; 2015 Jun; 23(3):406-11. PubMed ID: 24522008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of phospholipase A2 pathway in regulating activation of Bufo arenarum oocytes.
    Ajmat MT; Bonilla F; Hermosilla PC; Zelarayán L; Bühler MI
    Zygote; 2013 Aug; 21(3):214-20. PubMed ID: 22300896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous and LH-induced maturation in Bufo arenarum oocytes: importance of gap junctions.
    Toranzo GS; Oterino J; Zelarayán L; Bonilla F; Bühler MI
    Zygote; 2007 Feb; 15(1):65-80. PubMed ID: 17391547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of insulin on spontaneous and progesterone-induced GVBD on Bufo arenarum denuded oocytes.
    Sánchez Toranzo G; Bonilla F; Zelarayán L; Oterino J; Bühler MI
    Zygote; 2004 Aug; 12(3):185-95. PubMed ID: 15521708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. fMLP-induced arachidonic acid release in db-cAMP-differentiated HL-60 cells is independent of phosphatidylinositol-4, 5-bisphosphate-specific phospholipase C activation and cytosolic phospholipase A(2) activation.
    Sternfeld L; Thévenod F; Schulz I
    Arch Biochem Biophys; 2000 Jun; 378(2):246-58. PubMed ID: 10860542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of arachidonic acid cascade in Rhinella arenarum oocyte maturation.
    Ortiz ME; Arias-Torres AJ; Zelarayán LI
    Zygote; 2015 Aug; 23(4):603-14. PubMed ID: 24964276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of phosphatidylcholine-phospholipase C and protein kinase C in peptidoglycan-induced nuclear factor-kappaB activation and cyclooxygenase-2 expression in RAW 264.7 macrophages.
    Tzeng JI; Chen BC; Chang HM; Wang JJ; Sureshbabu M; Chien MH; Hsu MJ; Bien MY; Chiu WT; Hong CY; Lin CH
    Pharmacol Res; 2010 Feb; 61(2):162-6. PubMed ID: 19782752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strontium promotes calcium oscillations in mouse meiotic oocytes and early embryos through InsP3 receptors, and requires activation of phospholipase and the synergistic action of InsP3.
    Zhang D; Pan L; Yang LH; He XK; Huang XY; Sun FZ
    Hum Reprod; 2005 Nov; 20(11):3053-61. PubMed ID: 16055456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylcholine-specific phospholipase C regulates thapsigargin-induced calcium influx in human lymphocytes.
    Nofer JR; Tepel M; Walter M; Seedorf U; Assmann G; Zidek W
    J Biol Chem; 1997 Dec; 272(52):32861-8. PubMed ID: 9407064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of brain phosphatidylinositol-specific phospholipase C and diacylglycerol lipase in centrally administered histamine-induced adrenomedullary outflow in rats.
    Shimizu T; Yamaguchi N; Okada S; Lu L; Sasaki T; Yokotani K
    Eur J Pharmacol; 2007 Oct; 571(2-3):138-44. PubMed ID: 17628524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of bradykinin on K+ currents in NG108-15 cells treated with U73122, a phospholipase C inhibitor, or neomycin.
    Hildebrandt JP; Plant TD; Meves H
    Br J Pharmacol; 1997 Mar; 120(5):841-50. PubMed ID: 9138690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D609, an inhibitor of phosphatidylcholine-specific phospholipase C, inhibits group IV cytosolic phospholipase A2.
    Kang MS; Jung SY; Jung KM; Kim SK; Ahn KH; Kim DK
    Mol Cells; 2008 Nov; 26(5):481-5. PubMed ID: 18688177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.