BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2635089)

  • 1. Quantitative and morphological studies of the bones by mathematical morphology--theory and practice of mathematical morphology.
    Hongo T; Yotsuya H; Shibuya K; Nishii T; Ide Y
    Bull Tokyo Dent Coll; 1989 May; 30(2):59-65. PubMed ID: 2635089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative and morphological studies on the trabecular bones in the condyloid processes of the Japanese mandibles. Comparisons between dentulous and edentulous specimens.
    Hongo T; Yotsuya H; Shibuya K; Kawase M; Ide Y
    Bull Tokyo Dent Coll; 1989 May; 30(2):67-76. PubMed ID: 2635090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quantitative and morphological studies on the bones by mathematical morphology--theory and practice of mathematical morphology].
    Hongo T
    Shikwa Gakuho; 1987 Dec; 87(12):1569-81. PubMed ID: 3506742
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantitative and morphological studies of the trabecular bones in the condyloid processes of the Japanese mandibles; changes due to aging.
    Hongo T; Orihara K; Onoda Y; Nakajima K; Ide Y
    Bull Tokyo Dent Coll; 1989 Aug; 30(3):165-74. PubMed ID: 2637787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unifying principle relating stress to trabecular bone morphology.
    Fyhrie DP; Carter DR
    J Orthop Res; 1986; 4(3):304-17. PubMed ID: 3734938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial investigation of mathematical morphology for the digital extraction of the skeletal characteristics of trabecular bone.
    Kumasaka S; Kashima I
    Dentomaxillofac Radiol; 1997 May; 26(3):161-8. PubMed ID: 9442602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of trabecular structure using high resolution magnetic resonance imaging.
    Majumdar S; Genant HK
    Stud Health Technol Inform; 1997; 40():81-96. PubMed ID: 10168884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis.
    Giesen EB; Ding M; Dalstra M; van Eijden TM
    Calcif Tissue Int; 2003 Sep; 73(3):225-31. PubMed ID: 14667134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture.
    Pothuaud L; Carceller P; Hans D
    Bone; 2008 Apr; 42(4):775-87. PubMed ID: 18234577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in parathyroid hormone-related protein and 3-dimensional trabecular bone structure of the mandibular condyle following mandibular distraction osteogenesis in growing rats.
    Shibazaki R; Maki K; Tachikawa T; Shibasaki Y; Hinton RJ; Carlson DS; Opperman LA
    J Oral Maxillofac Surg; 2005 Apr; 63(4):505-12. PubMed ID: 15789323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An expression relating breaking stress and density of trabecular bone.
    Rajapakse CS; Thomsen JS; Espinoza Ortiz JS; Wimalawansa SJ; Ebbesen EN; Mosekilde L; Gunaratne GH
    J Biomech; 2004 Aug; 37(8):1241-9. PubMed ID: 15212930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of masticatory muscle function and bite-raising on mandibular morphology in the growing rat.
    Bresin A
    Swed Dent J Suppl; 2001; (150):1-49. PubMed ID: 11803646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral analysis and connectivity of porous microstructures in bone.
    Golden KM; Benjamin Murphy N; Cherkaev E
    J Biomech; 2011 Jan; 44(2):337-44. PubMed ID: 21094945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trabecular structure of the condyle of the jaw joint in young and mature sheep: a comparative histomorphometric reference.
    Cornish RJ; Wilson DF; Logan RM; Wiebkin OW
    Arch Oral Biol; 2006 Jan; 51(1):29-36. PubMed ID: 15950172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models.
    Deligianni DD; Apostolopoulos KN
    J Acoust Soc Am; 2007 Aug; 122(2):1180-90. PubMed ID: 17672664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling of appendicular bone growth in glaucous-winged gulls.
    Hayward JL; Henson SM; Banks JC; Lyn SL
    J Morphol; 2009 Jan; 270(1):70-82. PubMed ID: 18798246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model for bone tissue regeneration inside a specific type of scaffold.
    Sanz-Herrera JA; Garcia-Aznar JM; Doblare M
    Biomech Model Mechanobiol; 2008 Oct; 7(5):355-66. PubMed ID: 17530310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.