BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26351007)

  • 1. Label-free high-throughput detection and content sensing of individual droplets in microfluidic systems.
    Yesiloz G; Boybay MS; Ren CL
    Lab Chip; 2015 Oct; 15(20):4008-19. PubMed ID: 26351007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave sensing and heating of individual droplets in microfluidic devices.
    Boybay MS; Jiao A; Glawdel T; Ren CL
    Lab Chip; 2013 Oct; 13(19):3840-6. PubMed ID: 23896699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.
    Küster SK; Fagerer SR; Verboket PE; Eyer K; Jefimovs K; Zenobi R; Dittrich PS
    Anal Chem; 2013 Feb; 85(3):1285-9. PubMed ID: 23289755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packaging commercial CMOS chips for lab on a chip integration.
    Datta-Chaudhuri T; Abshire P; Smela E
    Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.
    Postek W; Garstecki P
    Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon photonic sensors incorporated in a digital microfluidic system.
    Lerma Arce C; Witters D; Puers R; Lammertyn J; Bienstman P
    Anal Bioanal Chem; 2012 Dec; 404(10):2887-94. PubMed ID: 22926129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A disposable emulsion droplet generation lab chips driven by vacuum module for manipulation of blood cells.
    Chia-Hung Lee ; Chien-Chong Hong
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8010-3. PubMed ID: 26738151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration and detection of biochemical assays in digital microfluidic LOC devices.
    Malic L; Brassard D; Veres T; Tabrizian M
    Lab Chip; 2010 Feb; 10(4):418-31. PubMed ID: 20126681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an ELC resonator-based reusable RF microfluidic sensor for blood glucose estimation.
    Govind G; Akhtar MJ
    Sci Rep; 2020 Nov; 10(1):18842. PubMed ID: 33139802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free detection of conformational changes in switchable DNA nanostructures with microwave microfluidics.
    Stelson AC; Liu M; Little CAE; Long CJ; Orloff ND; Stephanopoulos N; Booth JC
    Nat Commun; 2019 Mar; 10(1):1174. PubMed ID: 30862776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies.
    Chien JC; Ameri A; Yeh EC; Killilea AN; Anwar M; Niknejad AM
    Lab Chip; 2018 Jul; 18(14):2065-2076. PubMed ID: 29872834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Thermo-Capillary Mixing in Droplet Microfluidics Integrated with a Microwave Heater.
    Yesiloz G; Boybay MS; Ren CL
    Anal Chem; 2017 Feb; 89(3):1978-1984. PubMed ID: 28029032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Development of a Non-Intrusive and Label-Free THz Sensor for Rapid Detection of Aqueous Bio-Samples Using Microfluidic Approach.
    Pandit N; Jaiswal RK; Pathak NP
    IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):91-101. PubMed ID: 33434135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated chip-mass spectrometry and epifluorescence approach for online monitoring of bioactive metabolites from incubated Actinobacteria in picoliter droplets.
    Wink K; Mahler L; Beulig JR; Piendl SK; Roth M; Belder D
    Anal Bioanal Chem; 2018 Nov; 410(29):7679-7687. PubMed ID: 30269162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic control and quantification of bacterial population dynamics in droplets.
    Huang S; Srimani JK; Lee AJ; Zhang Y; Lopatkin AJ; Leong KW; You L
    Biomaterials; 2015 Aug; 61():239-45. PubMed ID: 26005763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.