These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26351007)

  • 1. Label-free high-throughput detection and content sensing of individual droplets in microfluidic systems.
    Yesiloz G; Boybay MS; Ren CL
    Lab Chip; 2015 Oct; 15(20):4008-19. PubMed ID: 26351007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave sensing and heating of individual droplets in microfluidic devices.
    Boybay MS; Jiao A; Glawdel T; Ren CL
    Lab Chip; 2013 Oct; 13(19):3840-6. PubMed ID: 23896699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.
    Küster SK; Fagerer SR; Verboket PE; Eyer K; Jefimovs K; Zenobi R; Dittrich PS
    Anal Chem; 2013 Feb; 85(3):1285-9. PubMed ID: 23289755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packaging commercial CMOS chips for lab on a chip integration.
    Datta-Chaudhuri T; Abshire P; Smela E
    Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.
    Postek W; Garstecki P
    Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon photonic sensors incorporated in a digital microfluidic system.
    Lerma Arce C; Witters D; Puers R; Lammertyn J; Bienstman P
    Anal Bioanal Chem; 2012 Dec; 404(10):2887-94. PubMed ID: 22926129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A disposable emulsion droplet generation lab chips driven by vacuum module for manipulation of blood cells.
    Chia-Hung Lee ; Chien-Chong Hong
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8010-3. PubMed ID: 26738151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration and detection of biochemical assays in digital microfluidic LOC devices.
    Malic L; Brassard D; Veres T; Tabrizian M
    Lab Chip; 2010 Feb; 10(4):418-31. PubMed ID: 20126681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an ELC resonator-based reusable RF microfluidic sensor for blood glucose estimation.
    Govind G; Akhtar MJ
    Sci Rep; 2020 Nov; 10(1):18842. PubMed ID: 33139802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free detection of conformational changes in switchable DNA nanostructures with microwave microfluidics.
    Stelson AC; Liu M; Little CAE; Long CJ; Orloff ND; Stephanopoulos N; Booth JC
    Nat Commun; 2019 Mar; 10(1):1174. PubMed ID: 30862776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies.
    Chien JC; Ameri A; Yeh EC; Killilea AN; Anwar M; Niknejad AM
    Lab Chip; 2018 Jul; 18(14):2065-2076. PubMed ID: 29872834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Thermo-Capillary Mixing in Droplet Microfluidics Integrated with a Microwave Heater.
    Yesiloz G; Boybay MS; Ren CL
    Anal Chem; 2017 Feb; 89(3):1978-1984. PubMed ID: 28029032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Development of a Non-Intrusive and Label-Free THz Sensor for Rapid Detection of Aqueous Bio-Samples Using Microfluidic Approach.
    Pandit N; Jaiswal RK; Pathak NP
    IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):91-101. PubMed ID: 33434135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated chip-mass spectrometry and epifluorescence approach for online monitoring of bioactive metabolites from incubated Actinobacteria in picoliter droplets.
    Wink K; Mahler L; Beulig JR; Piendl SK; Roth M; Belder D
    Anal Bioanal Chem; 2018 Nov; 410(29):7679-7687. PubMed ID: 30269162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic control and quantification of bacterial population dynamics in droplets.
    Huang S; Srimani JK; Lee AJ; Zhang Y; Lopatkin AJ; Leong KW; You L
    Biomaterials; 2015 Aug; 61():239-45. PubMed ID: 26005763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.