BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 26351162)

  • 41. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current approaches for global post-translational modification discovery and mass spectrometric analysis.
    Hoffman MD; Sniatynski MJ; Kast J
    Anal Chim Acta; 2008 Oct; 627(1):50-61. PubMed ID: 18790127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PEIMAN 1.0: Post-translational modification Enrichment, Integration and Matching ANalysis.
    Nickchi P; Jafari M; Kalantari S
    Database (Oxford); 2015; 2015():bav037. PubMed ID: 25911152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Common errors in mass spectrometry-based analysis of post-translational modifications.
    Kim MS; Zhong J; Pandey A
    Proteomics; 2016 Mar; 16(5):700-14. PubMed ID: 26667783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. VPTMdb: a viral posttranslational modification database.
    Xiang Y; Zou Q; Zhao L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33094321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families.
    Dewhurst HM; Choudhury S; Torres MP
    Mol Cell Proteomics; 2015 Aug; 14(8):2285-97. PubMed ID: 26070665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fishing the PTM proteome with chemical approaches using functional solid phases.
    Zhang Y; Zhang C; Jiang H; Yang P; Lu H
    Chem Soc Rev; 2015 Nov; 44(22):8260-87. PubMed ID: 26258179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SysPTM: a systematic resource for proteomic research on post-translational modifications.
    Li H; Xing X; Ding G; Li Q; Wang C; Xie L; Zeng R; Li Y
    Mol Cell Proteomics; 2009 Aug; 8(8):1839-49. PubMed ID: 19366988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitation of protein post-translational modifications using isobaric tandem mass tags.
    Liang HC; Lahert E; Pike I; Ward M
    Bioanalysis; 2015; 7(3):383-400. PubMed ID: 25697195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Software eyes for protein post-translational modifications.
    Na S; Paek E
    Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry.
    Prus G; Hoegl A; Weinert BT; Choudhary C
    Trends Biochem Sci; 2019 Nov; 44(11):943-960. PubMed ID: 31296352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomic analysis of post translational modifications in cyanobacteria.
    Xiong Q; Chen Z; Ge F
    J Proteomics; 2016 Feb; 134():57-64. PubMed ID: 26254007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Opportunities and Challenges of Smart Polymers in Post-Translational Modification Proteomics.
    Qing G; Lu Q; Xiong Y; Zhang L; Wang H; Li X; Liang X; Sun T
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28112833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deep Learning-Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction.
    Pakhrin SC; Pokharel S; Saigo H; Kc DB
    Methods Mol Biol; 2022; 2499():285-322. PubMed ID: 35696087
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Web-based computational tools for the prediction and analysis of post-translational modifications of proteins.
    Ivanisenko VA; Afonnikov DA; Kolchanov NA
    Methods Mol Biol; 2008; 446():363-84. PubMed ID: 18373270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systematic Characterization of Lysine Post-translational Modification Sites Using MUscADEL.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Webb GI; Xu D; Akutsu T; Song J
    Methods Mol Biol; 2022; 2499():205-219. PubMed ID: 35696083
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins.
    Deng W; Wang Y; Ma L; Zhang Y; Ullah S; Xue Y
    Brief Bioinform; 2017 Jul; 18(4):647-658. PubMed ID: 27241573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.