BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 26351162)

  • 61. novPTMenzy: a database for enzymes involved in novel post-translational modifications.
    Khater S; Mohanty D
    Database (Oxford); 2015; 2015():bav039. PubMed ID: 25931459
    [TBL] [Abstract][Full Text] [Related]  

  • 62. PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins.
    Craveur P; Rebehmed J; de Brevern AG
    Database (Oxford); 2014; 2014():. PubMed ID: 24857970
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The structural and functional signatures of proteins that undergo multiple events of post-translational modification.
    Pejaver V; Hsu WL; Xin F; Dunker AK; Uversky VN; Radivojac P
    Protein Sci; 2014 Aug; 23(8):1077-93. PubMed ID: 24888500
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Unrestricted identification of modified proteins using MS/MS.
    Ahrné E; Müller M; Lisacek F
    Proteomics; 2010 Feb; 10(4):671-86. PubMed ID: 20029840
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Human Proteomic Variation Revealed by Combining RNA-Seq Proteogenomics and Global Post-Translational Modification (G-PTM) Search Strategy.
    Cesnik AJ; Shortreed MR; Sheynkman GM; Frey BL; Smith LM
    J Proteome Res; 2016 Mar; 15(3):800-8. PubMed ID: 26704769
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Capsule network for protein post-translational modification site prediction.
    Wang D; Liang Y; Xu D
    Bioinformatics; 2019 Jul; 35(14):2386-2394. PubMed ID: 30520972
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Post-translational modifications induce significant yet not extreme changes to protein structure.
    Xin F; Radivojac P
    Bioinformatics; 2012 Nov; 28(22):2905-13. PubMed ID: 22947645
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Current status of PTMs structural databases: applications, limitations and prospects.
    de Brevern AG; Rebehmed J
    Amino Acids; 2022 Apr; 54(4):575-590. PubMed ID: 35020020
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Systematic characterization and prediction of post-translational modification cross-talk.
    Huang Y; Xu B; Zhou X; Li Y; Lu M; Jiang R; Li T
    Mol Cell Proteomics; 2015 Mar; 14(3):761-70. PubMed ID: 25605461
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease.
    Torres MP; Dewhurst H; Sundararaman N
    Mol Cell Proteomics; 2016 Nov; 15(11):3513-3528. PubMed ID: 27697855
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Computational identification of multiple lysine PTM sites by analyzing the instance hardness and feature importance.
    Ahmed S; Rahman A; Hasan MAM; Ahmad S; Shovan SM
    Sci Rep; 2021 Sep; 11(1):18882. PubMed ID: 34556767
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A homology-based pipeline for global prediction of post-translational modification sites.
    Chen X; Shi SP; Xu HD; Suo SB; Qiu JD
    Sci Rep; 2016 May; 6():25801. PubMed ID: 27174170
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PTM-X: Prediction of Post-Translational Modification Crosstalk Within and Across Proteins.
    Li Y; Huang Y; Li T
    Methods Mol Biol; 2022; 2499():275-283. PubMed ID: 35696086
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 75. TCellXTalk facilitates the detection of co-modified peptides for the study of protein post-translational modification cross-talk in T cells.
    Casanovas A; Gallardo Ó; Carrascal M; Abian J
    Bioinformatics; 2019 Apr; 35(8):1404-1413. PubMed ID: 30219844
    [TBL] [Abstract][Full Text] [Related]  

  • 76. GPS-YNO2: computational prediction of tyrosine nitration sites in proteins.
    Liu Z; Cao J; Ma Q; Gao X; Ren J; Xue Y
    Mol Biosyst; 2011 Apr; 7(4):1197-204. PubMed ID: 21258675
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Proteomic analysis and prediction of amino acid variations that influence protein posttranslational modifications.
    Shi S; Wang L; Cao M; Chen G; Yu J
    Brief Bioinform; 2019 Sep; 20(5):1597-1606. PubMed ID: 29788276
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications.
    Fagerquist CK; Bates AH; Heath S; King BC; Garbus BR; Harden LA; Miller WG
    J Proteome Res; 2006 Oct; 5(10):2527-38. PubMed ID: 17022624
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions.
    Saethang T; Payne DM; Avihingsanon Y; Pisitkun T
    BMC Bioinformatics; 2016 Aug; 17(1):307. PubMed ID: 27534850
    [TBL] [Abstract][Full Text] [Related]  

  • 80. PTMscape: an open source tool to predict generic post-translational modifications and map modification crosstalk in protein domains and biological processes.
    Li GXH; Vogel C; Choi H
    Mol Omics; 2018 Jun; 14(3):197-209. PubMed ID: 29876573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.