BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26351271)

  • 21. RBPPred: predicting RNA-binding proteins from sequence using SVM.
    Zhang X; Liu S
    Bioinformatics; 2017 Mar; 33(6):854-862. PubMed ID: 27993780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier.
    Xia J; Peng Z; Qi D; Mu H; Yang J
    Bioinformatics; 2017 Mar; 33(6):863-870. PubMed ID: 28039166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
    Mestdagh P; Lefever S; Volders PJ; Derveaux S; Hellemans J; Vandesompele J
    Sci Data; 2016 Jul; 3():160052. PubMed ID: 27377824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing.
    Madhukar NS; Elemento O
    Methods Mol Biol; 2018; 1711():277-296. PubMed ID: 29344895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network-based stratification analysis of 13 major cancer types using mutations in panels of cancer genes.
    Zhong X; Yang H; Zhao S; Shyr Y; Li B
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S7. PubMed ID: 26099277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning a predictive model for growth inhibition from the NCI DTP human tumor cell line screening data: does gene expression make a difference?
    Richter L; Rückert U; Kramer S
    Pac Symp Biocomput; 2006; ():596-607. PubMed ID: 17094272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying novel associations between small molecules and miRNAs based on integrated molecular networks.
    Lv Y; Wang S; Meng F; Yang L; Wang Z; Wang J; Chen X; Jiang W; Li Y; Li X
    Bioinformatics; 2015 Nov; 31(22):3638-44. PubMed ID: 26198104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of drug efficacy for cancer treatment based on comparative analysis of chemosensitivity and gene expression data.
    Wan P; Li Q; Larsen JE; Eklund AC; Parlesak A; Rigina O; Nielsen SJ; Björkling F; Jónsdóttir SÓ
    Bioorg Med Chem; 2012 Jan; 20(1):167-76. PubMed ID: 22154557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.
    Covell DG
    PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.
    Sun JX; He Y; Sanford E; Montesion M; Frampton GM; Vignot S; Soria JC; Ross JS; Miller VA; Stephens PJ; Lipson D; Yelensky R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005965. PubMed ID: 29415044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method to reduce ancestry related germline false positives in tumor only somatic variant calling.
    Halperin RF; Carpten JD; Manojlovic Z; Aldrich J; Keats J; Byron S; Liang WS; Russell M; Enriquez D; Claasen A; Cherni I; Awuah B; Oppong J; Wicha MS; Newman LA; Jaigge E; Kim S; Craig DW
    BMC Med Genomics; 2017 Oct; 10(1):61. PubMed ID: 29052513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring relative proportions of DNA variants from sequencing electropherograms.
    Carr IM; Robinson JI; Dimitriou R; Markham AF; Morgan AW; Bonthron DT
    Bioinformatics; 2009 Dec; 25(24):3244-50. PubMed ID: 19819885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning.
    Xu YY; Yang F; Zhang Y; Shen HB
    Bioinformatics; 2015 Apr; 31(7):1111-9. PubMed ID: 25414362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Translational bioinformatics approaches for systems and dynamical medicine.
    Yan Q
    Methods Mol Biol; 2014; 1175():19-34. PubMed ID: 25150864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data.
    Wang H; Huang S; Shou J; Su EW; Onyia JE; Liao B; Li S
    BMC Genomics; 2006 Jul; 7():166. PubMed ID: 16817967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization.
    Ammad-ud-din M; Georgii E; Gönen M; Laitinen T; Kallioniemi O; Wennerberg K; Poso A; Kaski S
    J Chem Inf Model; 2014 Aug; 54(8):2347-59. PubMed ID: 25046554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Over-representation of correlation analysis (ORCA): a method for identifying associations between variable sets.
    Pomyen Y; Segura M; Ebbels TM; Keun HC
    Bioinformatics; 2015 Jan; 31(1):102-8. PubMed ID: 25183485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset.
    Xue B; Lipps D; Devineni S
    PLoS One; 2016; 11(12):e0168392. PubMed ID: 28002428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.