BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26351324)

  • 1. Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression.
    Teicher BA; Polley E; Kunkel M; Evans D; Silvers T; Delosh R; Laudeman J; Ogle C; Reinhart R; Selby M; Connelly J; Harris E; Monks A; Morris J
    Mol Cancer Ther; 2015 Nov; 14(11):2452-62. PubMed ID: 26351324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression.
    Polley E; Kunkel M; Evans D; Silvers T; Delosh R; Laudeman J; Ogle C; Reinhart R; Selby M; Connelly J; Harris E; Fer N; Sonkin D; Kaur G; Monks A; Malik S; Morris J; Teicher BA
    J Natl Cancer Inst; 2016 Oct; 108(10):. PubMed ID: 27247353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.
    Xu Y; Huang J; Ma L; Shan J; Shen J; Yang Z; Liu L; Luo Y; Yao C; Qian C
    Cancer Lett; 2016 Feb; 371(2):171-81. PubMed ID: 26655273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the IGF1R/PI3K/AKT Pathway Sensitizes Ewing Sarcoma to BET Bromodomain Inhibitors.
    Loganathan SN; Tang N; Holler AE; Wang N; Wang J
    Mol Cancer Ther; 2019 May; 18(5):929-936. PubMed ID: 30926641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARP1 expression drives the synergistic antitumor activity of trabectedin and PARP1 inhibitors in sarcoma preclinical models.
    Pignochino Y; Capozzi F; D'Ambrosio L; Dell'Aglio C; Basiricò M; Canta M; Lorenzato A; Vignolo Lutati F; Aliberti S; Palesandro E; Boccone P; Galizia D; Miano S; Chiabotto G; Napione L; Gammaitoni L; Sangiolo D; Benassi MS; Pasini B; Chiorino G; Aglietta M; Grignani G
    Mol Cancer; 2017 Apr; 16(1):86. PubMed ID: 28454547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Panel Profiling Reveals Conserved Therapeutic Clusters and Differentiates the Mechanism of Action of Different PI3K/mTOR, Aurora Kinase and EZH2 Inhibitors.
    Uitdehaag JC; de Roos JA; Prinsen MB; Willemsen-Seegers N; de Vetter JR; Dylus J; van Doornmalen AM; Kooijman J; Sawa M; van Gerwen SJ; de Man J; Buijsman RC; Zaman GJ
    Mol Cancer Ther; 2016 Dec; 15(12):3097-3109. PubMed ID: 27587489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer.
    Brenner JC; Ateeq B; Li Y; Yocum AK; Cao Q; Asangani IA; Patel S; Wang X; Liang H; Yu J; Palanisamy N; Siddiqui J; Yan W; Cao X; Mehra R; Sabolch A; Basrur V; Lonigro RJ; Yang J; Tomlins SA; Maher CA; Elenitoba-Johnson KS; Hussain M; Navone NM; Pienta KJ; Varambally S; Feng FY; Chinnaiyan AM
    Cancer Cell; 2011 May; 19(5):664-78. PubMed ID: 21575865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling.
    McGonigle S; Chen Z; Wu J; Chang P; Kolber-Simonds D; Ackermann K; Twine NC; Shie JL; Miu JT; Huang KC; Moniz GA; Nomoto K
    Oncotarget; 2015 Dec; 6(38):41307-23. PubMed ID: 26513298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (ADP) ribose polymerase inhibition: A potential treatment of malignant peripheral nerve sheath tumor.
    Kivlin CM; Watson KL; Al Sannaa GA; Belousov R; Ingram DR; Huang KL; May CD; Bolshakov S; Landers SM; Kalam AA; Slopis JM; McCutcheon IE; Pollock RE; Lev D; Lazar AJ; Torres KE
    Cancer Biol Ther; 2016; 17(2):129-38. PubMed ID: 26650448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin-resistant poly (ADP-ribose) polymerase-1 overexpression is a potential therapeutic target in lymphangioleiomyomatosis.
    Sun Y; Gallacchi D; Zhang EY; Reynolds SB; Robinson L; Malinowska IA; Chiou TT; Pereira AM; Li C; Kwiatkowski DJ; Lee PS; Yu JJ
    Am J Respir Cell Mol Biol; 2014 Dec; 51(6):738-49. PubMed ID: 24874429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA profiling of primary high-grade soft tissue sarcomas.
    Renner M; Czwan E; Hartmann W; Penzel R; Brors B; Eils R; Wardelmann E; Büttner R; Lichter P; Schirmacher P; Mechtersheimer G
    Genes Chromosomes Cancer; 2012 Nov; 51(11):982-96. PubMed ID: 22811003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preclinical evaluation of the Aurora kinase inhibitors AMG 900, AZD1152-HQPA, and MK-5108 on SW-872 and 93T449 human liposarcoma cells.
    Noronha S; Alt LAC; Scimeca TE; Zarou O; Obrzut J; Zanotti B; Hayward EA; Pillai A; Mathur S; Rojas J; Salamah R; Chandar N; Fay MJ
    In Vitro Cell Dev Biol Anim; 2018 Jan; 54(1):71-84. PubMed ID: 29197031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BET, SRC, and BCL2 family inhibitors are synergistic drug combinations with PARP inhibitors in ovarian cancer.
    Lui GYL; Shaw R; Schaub FX; Stork IN; Gurley KE; Bridgwater C; Diaz RL; Rosati R; Swan HA; Ince TA; Harding TC; Gadi VK; Goff BA; Kemp CJ; Swisher EM; Grandori C
    EBioMedicine; 2020 Oct; 60():102988. PubMed ID: 32927276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ADP-ribose) polymerase 1 modulates the lethality of CHK1 inhibitors in carcinoma cells.
    Mitchell C; Park M; Eulitt P; Yang C; Yacoub A; Dent P
    Mol Pharmacol; 2010 Nov; 78(5):909-17. PubMed ID: 20696794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ADP-ribose) polymerase 1 modulates the lethality of CHK1 inhibitors in mammary tumors.
    Tang Y; Hamed HA; Poklepovic A; Dai Y; Grant S; Dent P
    Mol Pharmacol; 2012 Aug; 82(2):322-32. PubMed ID: 22596349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors.
    Du Y; Yamaguchi H; Wei Y; Hsu JL; Wang HL; Hsu YH; Lin WC; Yu WH; Leonard PG; Lee GR; Chen MK; Nakai K; Hsu MC; Chen CT; Sun Y; Wu Y; Chang WC; Huang WC; Liu CL; Chang YC; Chen CH; Park M; Jones P; Hortobagyi GN; Hung MC
    Nat Med; 2016 Feb; 22(2):194-201. PubMed ID: 26779812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ewing sarcoma: The clinical relevance of the insulin-like growth factor 1 and the poly-ADP-ribose-polymerase pathway.
    van Maldegem AM; Bovée JV; Peterse EF; Hogendoorn PC; Gelderblom H
    Eur J Cancer; 2016 Jan; 53():171-80. PubMed ID: 26765686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Combination CDK4/6 and IGF1R Inhibitor Strategy for Ewing Sarcoma.
    Guenther LM; Dharia NV; Ross L; Conway A; Robichaud AL; Catlett JL; Wechsler CS; Frank ES; Goodale A; Church AJ; Tseng YY; Guha R; McKnight CG; Janeway KA; Boehm JS; Mora J; Davis MI; Alexe G; Piccioni F; Stegmaier K
    Clin Cancer Res; 2019 Feb; 25(4):1343-1357. PubMed ID: 30397176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways.
    Chen J; Hou R; Zhang X; Ye Y; Wang Y; Tian J
    PLoS One; 2014; 9(3):e91245. PubMed ID: 24618835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ADP-ribose) polymerase as a novel regulator of 17β-estradiol-induced cell growth through a control of the estrogen receptor/IGF-1 receptor/PDZK1 axis.
    Kim H; Tarhuni A; Abd Elmageed ZY; Boulares AH
    J Transl Med; 2015 Jul; 13():233. PubMed ID: 26183824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.