These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2635133)

  • 1. Regulation of nebramycin biosynthesis by inorganic phosphate.
    Todorov TK; Mikhailova-Ivanova N; Blumauerová M
    Folia Microbiol (Praha); 1989; 34(6):539-41. PubMed ID: 2635133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of resistance to aminoglycoside antibiotics in nebramycin-producing Streptomyces tenebrarius.
    Yamamoto H; Hotta K; Okami Y; Umezawa H
    J Antibiot (Tokyo); 1982 Aug; 35(8):1020-5. PubMed ID: 7142002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of antibiotic resistance on the appearance of mutants in a culture of Streptomyces cremeus subsp. tobramycini producing an aminoglycoside complex].
    Siniagina OP; Lapchinskaia OA
    Antibiotiki; 1983 Apr; 28(4):262-5. PubMed ID: 6859825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site of regulation of nanaomycin biosynthesis by inorganic phosphate.
    Masuma R; Zhen DZ; Tanaka Y; Omura S
    J Antibiot (Tokyo); 1990 Jan; 43(1):83-7. PubMed ID: 2307632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cloning of the sugar related biosynthesis gene cluster from Streptomyces tenebrarius H6].
    Li TB; Shang GD; Xia HZ; Wang YG
    Sheng Wu Gong Cheng Xue Bao; 2001 May; 17(3):329-31. PubMed ID: 11517612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Streptomyces tenebrarius to synthesize single component of carbamoyl tobramycin.
    Hong W; Yan S
    Lett Appl Microbiol; 2012 Jul; 55(1):33-9. PubMed ID: 22509935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of inorganic phosphate on the lipid synthesis of a phosphate-deregulated mutant of Streptomyces noursei.
    Hänel F; Gräfe U; Roth M; Bormann EJ; Krebs D
    J Basic Microbiol; 1985; 25(5):325-33. PubMed ID: 2993581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Antibiotic formation from a pyrimidine base group and an aminoglycoside group by a Streptomyces coeruleoaurantiacus sp. nov. culture].
    Gauze GF; Preobrazhenskaia TP; Terekhova LP; Maksimova TS; Avericheva LN
    Antibiotiki; 1982 Apr; 27(4):243-7. PubMed ID: 7092197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development of new technology for isolation of nebramycin complex antibiotics from the cultural fluid].
    Nogovitsyna LV; Mikhaĭlov VA; Kharechko AT; Sadovoĭ NV
    Antibiot Khimioter; 2004; 49(1):4-7. PubMed ID: 15164516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of protoplast formation and regeneration on the production of nebramycin complex in Streptomyces cremeus subsp. tobramycini].
    Malanicheva IA; Koz'mian LI
    Antibiot Khimioter; 1990 Jul; 35(7):3-5. PubMed ID: 2285339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of spiramycin synthesis in Streptomyces ambofaciens: effects of glucose and inorganic phosphate.
    Lounès A; Lebrihi A; Benslimane C; Lefebvre G; Germain P
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):204-11. PubMed ID: 8920193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate inhibition of secondary metabolism in Streptomyces hygroscopicus and its reversal by cyclic AMP.
    Gersch D; Skurk A; Römer W
    Arch Microbiol; 1979 Apr; 121(1):91-6. PubMed ID: 223512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of nanaomycin and other antibiotics by phosphate-depressed fermentation using phosphate-trapping agents.
    Masuma R; Tanaka Y; Tanaka H; Omura S
    J Antibiot (Tokyo); 1986 Nov; 39(11):1557-64. PubMed ID: 3793625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two Cryptic Self-Resistance Mechanisms in Streptomyces tenebrarius Reveal Insights into the Biosynthesis of Apramycin.
    Zhang Q; Chi HT; Wu L; Deng Z; Yu Y
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8990-8996. PubMed ID: 33538390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phosphate on the biosynthesis of nourseothricin by Streptomyces noursei JA 3890b.
    Müller PJ; Haubold G; Menner M; Grosse HH; Ozegowski JH; Bocker H
    Z Allg Mikrobiol; 1984; 24(8):555-64. PubMed ID: 6095543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strains of Streptomyces tenebrarius and biosynthesis of nebramycin.
    Stark WM; Knox NG; Wilgus RM
    Folia Microbiol (Praha); 1971; 16(3):205-17. PubMed ID: 5564338
    [No Abstract]   [Full Text] [Related]  

  • 17. [Metabolism of phosphate-limited Streptomyces cultures. III. The ambivalent effect of phosphates in nourseothricin-producing cultures of Streptomyces noursei JA 3890b].
    Müller PJ; Ozegowski JH
    Zentralbl Bakteriol Mikrobiol Hyg A; 1985 Aug; 260(1):15-34. PubMed ID: 2998122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Streptomyces tenebrarius and Micromonospora purpurea.
    Piendl W; Böck A; Cundliffe E
    Mol Gen Genet; 1984; 197(1):24-9. PubMed ID: 6083433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of inorganic phosphate and organic buffers on cephalosporin production by Streptomyces clavuligerus.
    Aharonowitz Y; Demain AL
    Arch Microbiol; 1977 Nov; 115(2):169-73. PubMed ID: 23086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of
    Mitousis L; Maier H; Martinovic L; Kulik A; Stockert S; Wohlleben W; Stiefel A; Musiol-Kroll EM
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.