These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26351693)

  • 1. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.
    Filipov ET; Tachi T; Paulino GH
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12321-6. PubMed ID: 26351693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origami tubes with reconfigurable polygonal cross-sections.
    Filipov ET; Paulino GH; Tachi T
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150607. PubMed ID: 26997894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states.
    Jamalimehr A; Mirzajanzadeh M; Akbarzadeh A; Pasini D
    Nat Commun; 2022 Apr; 13(1):1816. PubMed ID: 35383167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness.
    Zhai Z; Wang Y; Jiang H
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2032-2037. PubMed ID: 29440441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twist of Tubular Mechanical Metamaterials Based on Waterbomb Origami.
    Feng H; Ma J; Chen Y; You Z
    Sci Rep; 2018 Jun; 8(1):9522. PubMed ID: 29934606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of Tubular Waterbomb.
    Ma J; Feng H; Chen Y; Hou D; You Z
    Research (Wash D C); 2020; 2020():1735081. PubMed ID: 32529187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of complex origami assemblages for reconfigurable structures.
    Zhao Z; Kuang X; Wu J; Zhang Q; Paulino GH; Qi HJ; Fang D
    Soft Matter; 2018 Oct; 14(39):8051-8059. PubMed ID: 30255916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origami-Based Reconfigurable Metamaterials for Tunable Chirality.
    Wang Z; Jing L; Yao K; Yang Y; Zheng B; Soukoulis CM; Chen H; Liu Y
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28481048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices.
    Fang H; Li S; Ji H; Wang KW
    Phys Rev E; 2016 Oct; 94(4-1):043002. PubMed ID: 27841481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear mechanics of non-rigid origami: an efficient computational approach.
    Liu K; Paulino GH
    Proc Math Phys Eng Sci; 2017 Oct; 473(2206):20170348. PubMed ID: 29118663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Self-Locking Origami Mechanical Metamaterials.
    Fang H; Chu SA; Xia Y; Wang KW
    Adv Mater; 2018 Apr; 30(15):e1706311. PubMed ID: 29513374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions.
    Xiao K; Liang Z; Zou B; Zhou X; Ju J
    Nat Commun; 2022 Dec; 13(1):7474. PubMed ID: 36463271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Kresling origami deployment.
    Kidambi N; Wang KW
    Phys Rev E; 2020 Jun; 101(6-1):063003. PubMed ID: 32688523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable origami-inspired acoustic waveguides.
    Babaee S; Overvelde JT; Chen ER; Tournat V; Bertoldi K
    Sci Adv; 2016 Nov; 2(11):e1601019. PubMed ID: 28138527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing of self-deploying origami structures using geometrically misaligned crease patterns.
    Saito K; Tsukahara A; Okabe Y
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150235. PubMed ID: 26997884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-Mode Programmable Metamaterial Using Ternary Foldable Origami.
    Le DH; Lim S
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28554-28561. PubMed ID: 31310501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of disconnection of deformable units on the mobility and stiffness of 3D prismatic modular origami structures using angular kinematics.
    Xiao K; Zhou X; Ju J
    Sci Rep; 2021 Sep; 11(1):18259. PubMed ID: 34521915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-triangles cylindrical origami and inspired metamaterials with tunable stiffness and stretchable robotic arm.
    Wang X; Qu H; Li X; Kuang Y; Wang H; Guo S
    PNAS Nexus; 2023 Apr; 2(4):pgad098. PubMed ID: 37065617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foldable cones as a framework for nonrigid origami.
    Andrade-Silva I; Adda-Bedia M; Dias MA
    Phys Rev E; 2019 Sep; 100(3-1):033003. PubMed ID: 31639905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.