These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization. Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392 [TBL] [Abstract][Full Text] [Related]
23. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. Kandala SK; Sharma A; Mirpour S; Liapi E; Ivkov R; Attaluri A Int J Hyperthermia; 2021; 38(1):611-622. PubMed ID: 33853493 [TBL] [Abstract][Full Text] [Related]
24. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments. Gayzik FS; Scott EP; Loulou T J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442 [TBL] [Abstract][Full Text] [Related]
26. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer? Carrião MS; Bakuzis AF Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437 [TBL] [Abstract][Full Text] [Related]
27. On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids. Di Michele F; Pizzichelli G; Mazzolai B; Sinibaldi E Math Biosci; 2015 Apr; 262():105-16. PubMed ID: 25640871 [TBL] [Abstract][Full Text] [Related]
28. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis. Piao D; Towner RA; Smith N; Chen WR Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611 [TBL] [Abstract][Full Text] [Related]
29. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990 [TBL] [Abstract][Full Text] [Related]
30. Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines. Souiade L; Domingo-Diez J; Alcaide C; Gámez B; Gámez L; Ramos M; Serrano Olmedo JJ Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958913 [TBL] [Abstract][Full Text] [Related]
31. Radiofrequency heating induced by 7T head MRI: thermal assessment using discrete vasculature or Pennes' bioheat equation. van Lier AL; Kotte AN; Raaymakers BW; Lagendijk JJ; van den Berg CA J Magn Reson Imaging; 2012 Apr; 35(4):795-803. PubMed ID: 22068916 [TBL] [Abstract][Full Text] [Related]
32. MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia. Lebrun A; Manuchehrabadi N; Attaluri A; Wang F; Ma R; Zhu L Int J Hyperthermia; 2013 Dec; 29(8):730-8. PubMed ID: 24074039 [TBL] [Abstract][Full Text] [Related]
33. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449 [TBL] [Abstract][Full Text] [Related]
34. Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. Bellizzi G; Bucci OM; Chirico G Int J Hyperthermia; 2016 Sep; 32(6):688-703. PubMed ID: 27268850 [TBL] [Abstract][Full Text] [Related]
35. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors. Yifat J; Gannot I Microvasc Res; 2015 Mar; 98():197-217. PubMed ID: 24462603 [TBL] [Abstract][Full Text] [Related]
36. A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. Saeedi M; Vahidi O; Goodarzi V; Saeb MR; Izadi L; Mozafari M Nanomedicine; 2017 Nov; 13(8):2405-2414. PubMed ID: 28764975 [TBL] [Abstract][Full Text] [Related]
37. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies. Ma M; Zhang Y; Gu N J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303 [TBL] [Abstract][Full Text] [Related]
38. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
39. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process. Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266 [TBL] [Abstract][Full Text] [Related]
40. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia. Attaluri A; Ma R; Qiu Y; Li W; Zhu L Int J Hyperthermia; 2011; 27(5):491-502. PubMed ID: 21756046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]