These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 26351900)

  • 41. FEM simulation of EM field effect on body tissues with bio-nanofluid (blood with nanoparticles) for nanoparticle mediated hyperthermia.
    Goyal R; Bhargava R
    Math Biosci; 2018 Jun; 300():76-86. PubMed ID: 29580853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetic particle hyperthermia--a promising tumour therapy?
    Dutz S; Hergt R
    Nanotechnology; 2014 Nov; 25(45):452001. PubMed ID: 25337919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational Modelling of Magnetic Nanoparticle Properties and In Vivo Responses.
    Winkler DA
    Curr Med Chem; 2017; 24(5):483-496. PubMed ID: 27758713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.
    Liu X; Zhang Y; Wang Y; Zhu W; Li G; Ma X; Zhang Y; Chen S; Tiwari S; Shi K; Zhang S; Fan HM; Zhao YX; Liang XJ
    Theranostics; 2020; 10(8):3793-3815. PubMed ID: 32206123
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles.
    Kaczmarek K; Hornowski T; Kubovčíková M; Timko M; Koralewski M; Józefczak A
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11554-11564. PubMed ID: 29560717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noninvasive intratumoral thermal dose determination during
    Capistrano G; Rodrigues HF; Zufelato N; Gonçalves C; Cardoso CG; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):120-140. PubMed ID: 33426991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia.
    Wang H; Wu J; Zhuo Z; Tang J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S827-39. PubMed ID: 27198462
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer.
    Attaluri A; Kandala SK; Wabler M; Zhou H; Cornejo C; Armour M; Hedayati M; Zhang Y; DeWeese TL; Herman C; Ivkov R
    Int J Hyperthermia; 2015 Jun; 31(4):359-74. PubMed ID: 25811736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model.
    Miaskowski A; Sawicki B
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1806-13. PubMed ID: 23358949
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Rodrigues HF; Capistrano G; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):76-99. PubMed ID: 33426989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2009 Jun; 25(4):309-21. PubMed ID: 19670098
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling of intraluminal heating of biological tissue: implications for treatment of benign prostatic hyperplasia.
    Anvari B; Rastegar S; Motamedi M
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):854-64. PubMed ID: 7525453
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel magnetic heating probe for multimodal cancer treatment.
    Kan-Dapaah K; Rahbar N; Soboyejo W
    Med Phys; 2015 May; 42(5):2203-11. PubMed ID: 25979014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential Evolution Optimization of the SAR Distribution for Head and Neck Hyperthermia.
    Cappiello G; McGinley B; Elahi MA; Drizdal T; Paulides MM; Glavin M; O'Halloran M; Jones E
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1875-1885. PubMed ID: 28113287
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments.
    Rubia-Rodríguez I; Zilberti L; Arduino A; Bottauscio O; Chiampi M; Ortega D
    Int J Hyperthermia; 2021; 38(1):846-861. PubMed ID: 34074196
    [No Abstract]   [Full Text] [Related]  

  • 60. [Theoretical simulation of temperature distribution in electromagnetic hyperthermia of tumors].
    Kudriavtsev IuS; Kolmykov AV
    Med Radiol (Mosk); 1990 Feb; 35(2):3-9. PubMed ID: 2314203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.