These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26351966)

  • 1. Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study.
    Yang Z; Gonzalez CM; Purkait TK; Iqbal M; Meldrum A; Veinot JG
    Langmuir; 2015 Sep; 31(38):10540-8. PubMed ID: 26351966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-induced alkene oligomerization: does thermal hydrosilylation really lead to monolayer protected silicon nanocrystals?
    Yang Z; Iqbal M; Dobbie AR; Veinot JG
    J Am Chem Soc; 2013 Nov; 135(46):17595-601. PubMed ID: 24164590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical-Induced Hydrosilylation Reactions for the Functionalization of Two-Dimensional Hydride Terminated Silicon Nanosheets.
    Helbich T; Lyuleeva A; Höhlein IM; Marx P; Scherf LM; Kehrle J; Fässler TF; Lugli P; Rieger B
    Chemistry; 2016 Apr; 22(18):6194-8. PubMed ID: 26919399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ IR-spectroscopy as a tool for monitoring the radical hydrosilylation process on silicon nanocrystal surfaces.
    Kehrle J; Kaiser S; Purkait TK; Winnacker M; Helbich T; Vagin S; Veinot JGC; Rieger B
    Nanoscale; 2017 Jun; 9(24):8489-8495. PubMed ID: 28604898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the reactivity of alkynes and alkenes on silicon (100) surfaces.
    Ng A; Ciampi S; James M; Harper JB; Gooding JJ
    Langmuir; 2009 Dec; 25(24):13934-41. PubMed ID: 19588953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a mechanistic understanding of exciton-mediated hydrosilylation on nanocrystalline silicon.
    Huck LA; Buriak JM
    J Am Chem Soc; 2012 Jan; 134(1):489-97. PubMed ID: 22087744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces.
    Clark RJ; Dang MK; Veinot JG
    Langmuir; 2010 Oct; 26(19):15657-64. PubMed ID: 20815392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous Functionalization of Chemically Etched Silicon Nanocrystal Surfaces.
    Mobarok MH; Purkait TK; Islam MA; Miskolzie M; Veinot JGC
    Angew Chem Int Ed Engl; 2017 May; 56(22):6073-6077. PubMed ID: 27862780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the hydrosilylation reaction of alkenes at porous silicon: experimental and computational deuterium labeling studies.
    de Smet LC; Zuilhof H; Sudhölter EJ; Lie LH; Houlton A; Horrocks BR
    J Phys Chem B; 2005 Jun; 109(24):12020-31. PubMed ID: 16852483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals.
    Jariwala BN; Dewey OS; Stradins P; Ciobanu CV; Agarwal S
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3033-41. PubMed ID: 21774486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diazonium salts as grafting agents and efficient radical-hydrosilylation initiators for freestanding photoluminescent silicon nanocrystals.
    Höhlein IM; Kehrle J; Helbich T; Yang Z; Veinot JG; Rieger B
    Chemistry; 2014 Apr; 20(15):4212-6. PubMed ID: 24664787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The initiation mechanisms for surface hydrosilylation with 1-alkenes.
    Lee MV; Scipioni R; Boero M; Silvestrelli PL; Ariga K
    Phys Chem Chem Phys; 2011 Mar; 13(11):4862-7. PubMed ID: 21258670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking the silicon surface: reactivity of silyl radical cations toward nucleophiles.
    Rijksen B; van Lagen B; Zuilhof H
    J Am Chem Soc; 2011 Apr; 133(13):4998-5008. PubMed ID: 21405139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study.
    Coletti C; Marrone A; Giorgi G; Sgamellotti A; Cerofolini G; Re N
    Langmuir; 2006 Nov; 22(24):9949-56. PubMed ID: 17106984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping silicon surface-based radicals.
    Wang D; Buriak JM
    Langmuir; 2006 Jul; 22(14):6214-21. PubMed ID: 16800678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature radical initiated hydrosilylation of silicon quantum dots.
    Koh TT; Huang T; Schwan J; Xia P; Roberts ST; Mangolini L; Tang ML
    Faraday Discuss; 2020 Jun; 222(0):190-200. PubMed ID: 32104858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces.
    Purkait TK; Iqbal M; Wahl MH; Gottschling K; Gonzalez CM; Islam MA; Veinot JG
    J Am Chem Soc; 2014 Dec; 136(52):17914-7. PubMed ID: 25493358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si(111) surfaces.
    Wong KT; Lewis NS
    Acc Chem Res; 2014 Oct; 47(10):3037-44. PubMed ID: 25192516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation.
    Khung YL; Ngalim SH; Scaccabarozi A; Narducci D
    Sci Rep; 2015 Jun; 5():11299. PubMed ID: 26067470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient routes to carbon-silicon bond formation for the synthesis of silicon-containing peptides and azasilaheterocycles.
    Min GK; Hernández D; Skrydstrup T
    Acc Chem Res; 2013 Feb; 46(2):457-70. PubMed ID: 23214467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.