BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26352172)

  • 21. Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase.
    Morra S; Giraudo A; Di Nardo G; King PW; Gilardi G; Valetti F
    PLoS One; 2012; 7(10):e48400. PubMed ID: 23133586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor.
    Czech I; Silakov A; Lubitz W; Happe T
    FEBS Lett; 2010 Feb; 584(3):638-42. PubMed ID: 20018187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural insights into the active-ready form of [FeFe]-hydrogenase and mechanistic details of its inhibition by carbon monoxide.
    Greco C; Bruschi M; Heimdal J; Fantucci P; De Gioia L; Ryde U
    Inorg Chem; 2007 Sep; 46(18):7256-8. PubMed ID: 17676838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster.
    Swanson KD; Ratzloff MW; Mulder DW; Artz JH; Ghose S; Hoffman A; White S; Zadvornyy OA; Broderick JB; Bothner B; King PW; Peters JW
    J Am Chem Soc; 2015 Feb; 137(5):1809-16. PubMed ID: 25579778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical investigations of the interconversions between catalytic and inhibited states of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans.
    Parkin A; Cavazza C; Fontecilla-Camps JC; Armstrong FA
    J Am Chem Soc; 2006 Dec; 128(51):16808-15. PubMed ID: 17177431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association.
    Long H; King PW; Ghirardi ML; Kim K
    J Phys Chem A; 2009 Apr; 113(16):4060-7. PubMed ID: 19317477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster.
    Fourmond V; Greco C; Sybirna K; Baffert C; Wang PH; Ezanno P; Montefiori M; Bruschi M; Meynial-Salles I; Soucaille P; Blumberger J; Bottin H; De Gioia L; Léger C
    Nat Chem; 2014 Apr; 6(4):336-42. PubMed ID: 24651202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging.
    Madden C; Vaughn MD; Díez-Pérez I; Brown KA; King PW; Gust D; Moore AL; Moore TA
    J Am Chem Soc; 2012 Jan; 134(3):1577-82. PubMed ID: 21916466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic Hydricity of [FeFe]-Hydrogenases.
    Wiedner ES
    J Am Chem Soc; 2019 May; 141(18):7212-7222. PubMed ID: 31012307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode.
    Morra S; Valetti F; Sadeghi SJ; King PW; Meyer T; Gilardi G
    Chem Commun (Camb); 2011 Oct; 47(38):10566-8. PubMed ID: 21863186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic modeling of hydrogen conversion at [Fe] hydrogenase active-site models.
    Finkelmann AR; Stiebritz MT; Reiher M
    J Phys Chem B; 2013 May; 117(17):4806-17. PubMed ID: 23560849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caught in the H
    Rodríguez-Maciá P; Galle LM; Bjornsson R; Lorent C; Zebger I; Yoda Y; Cramer SP; DeBeer S; Span I; Birrell JA
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16786-16794. PubMed ID: 32488975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases.
    Vincent KA; Parkin A; Lenz O; Albracht SP; Fontecilla-Camps JC; Cammack R; Friedrich B; Armstrong FA
    J Am Chem Soc; 2005 Dec; 127(51):18179-89. PubMed ID: 16366571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases.
    Tard C; Pickett CJ
    Chem Rev; 2009 Jun; 109(6):2245-74. PubMed ID: 19438209
    [No Abstract]   [Full Text] [Related]  

  • 36. Engineering an [FeFe]-Hydrogenase: Do Accessory Clusters Influence O
    Caserta G; Papini C; Adamska-Venkatesh A; Pecqueur L; Sommer C; Reijerse E; Lubitz W; Gauquelin C; Meynial-Salles I; Pramanik D; Artero V; Atta M; Del Barrio M; Faivre B; Fourmond V; Léger C; Fontecave M
    J Am Chem Soc; 2018 Apr; 140(16):5516-5526. PubMed ID: 29595965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity.
    Kertess L; Wittkamp F; Sommer C; Esselborn J; Rüdiger O; Reijerse EJ; Hofmann E; Lubitz W; Winkler M; Happe T; Apfel UP
    Dalton Trans; 2017 Dec; 46(48):16947-16958. PubMed ID: 29177350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques.
    Lubitz W; Reijerse E; van Gastel M
    Chem Rev; 2007 Oct; 107(10):4331-65. PubMed ID: 17845059
    [No Abstract]   [Full Text] [Related]  

  • 39. Activation of HydA(DeltaEFG) requires a preformed [4Fe-4S] cluster.
    Mulder DW; Ortillo DO; Gardenghi DJ; Naumov AV; Ruebush SS; Szilagyi RK; Huynh B; Broderick JB; Peters JW
    Biochemistry; 2009 Jul; 48(26):6240-8. PubMed ID: 19435321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [FeFe]-hydrogenase maturation.
    Shepard EM; Mus F; Betz JN; Byer AS; Duffus BR; Peters JW; Broderick JB
    Biochemistry; 2014 Jul; 53(25):4090-104. PubMed ID: 24878200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.