These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 26352357)
1. The redox switch that regulates molecular chaperones. Conway ME; Lee C Biomol Concepts; 2015 Aug; 6(4):269-84. PubMed ID: 26352357 [TBL] [Abstract][Full Text] [Related]
2. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Uehara T; Nakamura T; Yao D; Shi ZQ; Gu Z; Ma Y; Masliah E; Nomura Y; Lipton SA Nature; 2006 May; 441(7092):513-7. PubMed ID: 16724068 [TBL] [Abstract][Full Text] [Related]
3. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Wang L; Wang X; Wang CC Free Radic Biol Med; 2015 Jun; 83():305-13. PubMed ID: 25697778 [TBL] [Abstract][Full Text] [Related]
4. Human pancreas-specific protein disulfide isomerase homolog (PDIp) is redox-regulated through formation of an inter-subunit disulfide bond. Fu X; Zhu BT Arch Biochem Biophys; 2009 May; 485(1):1-9. PubMed ID: 19150607 [TBL] [Abstract][Full Text] [Related]
5. The branched-chain aminotransferase proteins: novel redox chaperones for protein disulfide isomerase--implications in Alzheimer's disease. El Hindy M; Hezwani M; Corry D; Hull J; El Amraoui F; Harris M; Lee C; Forshaw T; Wilson A; Mansbridge A; Hassler M; Patel VB; Kehoe PG; Love S; Conway ME Antioxid Redox Signal; 2014 Jun; 20(16):2497-513. PubMed ID: 24094038 [TBL] [Abstract][Full Text] [Related]
6. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Soares Moretti AI; Martins Laurindo FR Arch Biochem Biophys; 2017 Mar; 617():106-119. PubMed ID: 27889386 [TBL] [Abstract][Full Text] [Related]
7. Beyond transcription--new mechanisms for the regulation of molecular chaperones. Winter J; Jakob U Crit Rev Biochem Mol Biol; 2004; 39(5-6):297-317. PubMed ID: 15763707 [TBL] [Abstract][Full Text] [Related]
8. Thiol redox homeostasis in neurodegenerative disease. McBean GJ; Aslan M; Griffiths HR; Torrão RC Redox Biol; 2015 Aug; 5():186-194. PubMed ID: 25974624 [TBL] [Abstract][Full Text] [Related]
9. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Veal EA; Underwood ZE; Tomalin LE; Morgan BA; Pillay CS Antioxid Redox Signal; 2018 Mar; 28(7):574-590. PubMed ID: 28762774 [TBL] [Abstract][Full Text] [Related]
10. Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. McLaughlin SH; Bulleid NJ Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):793-800. PubMed ID: 9560306 [TBL] [Abstract][Full Text] [Related]
11. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins. Conway ME; Coles SJ; Islam MM; Hutson SM Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134 [TBL] [Abstract][Full Text] [Related]
12. An additional cysteine in a typical 2-Cys peroxiredoxin of Pseudomonas promotes functional switching between peroxidase and molecular chaperone. An BC; Lee SS; Jung HS; Kim JY; Lee Y; Lee KW; Lee SY; Tripathi BN; Chung BY FEBS Lett; 2015 Sep; 589(19 Pt B):2831-40. PubMed ID: 26278368 [TBL] [Abstract][Full Text] [Related]
13. Identification of the redox partners of ERdj5/JPDI, a PDI family member, from an animal tissue. Kadokura H; Saito M; Tsuru A; Hosoda A; Iwawaki T; Inaba K; Kohno K Biochem Biophys Res Commun; 2013 Oct; 440(2):245-50. PubMed ID: 24055038 [TBL] [Abstract][Full Text] [Related]
14. Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface. Serve O; Kamiya Y; Maeno A; Nakano M; Murakami C; Sasakawa H; Yamaguchi Y; Harada T; Kurimoto E; Yagi-Utsumi M; Iguchi T; Inaba K; Kikuchi J; Asami O; Kajino T; Oka T; Nakasako M; Kato K J Mol Biol; 2010 Feb; 396(2):361-74. PubMed ID: 19944705 [TBL] [Abstract][Full Text] [Related]
15. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Noiva R Semin Cell Dev Biol; 1999 Oct; 10(5):481-93. PubMed ID: 10597631 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI). Mares RE; Minchaca AZ; Villagrana S; Meléndez-López SG; Ramos MA Biomed Res Int; 2015; 2015():286972. PubMed ID: 25695056 [TBL] [Abstract][Full Text] [Related]
17. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Molinari M; Helenius A Nature; 1999 Nov; 402(6757):90-3. PubMed ID: 10573423 [TBL] [Abstract][Full Text] [Related]
18. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Biteau B; Labarre J; Toledano MB Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471 [TBL] [Abstract][Full Text] [Related]
19. The protein disulphide-isomerase family: unravelling a string of folds. Ferrari DM; Söling HD Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):1-10. PubMed ID: 10085220 [TBL] [Abstract][Full Text] [Related]
20. Physiological Significance of Plant Peroxiredoxins and the Structure-Related and Multifunctional Biochemistry of Peroxiredoxin 1. Lee ES; Kang CH; Park JH; Lee SY Antioxid Redox Signal; 2018 Mar; 28(7):625-639. PubMed ID: 29113450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]