These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26352462)

  • 1. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.
    Subramanian S; Mast TD
    Phys Med Biol; 2015 Oct; 60(19):N345-55. PubMed ID: 26352462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment.
    Barauskas R; Gulbinas A; Barauskas G
    Medicina (Kaunas); 2007; 43(4):310-25. PubMed ID: 17485959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of saline-mixed tissue conductivity and ablation lesion size.
    Yull Park J; Young Park C; Min Lee J
    Comput Biol Med; 2013 Jun; 43(5):504-12. PubMed ID: 23566396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical evaluation of ablation zone under different tip temperatures during radiofrequency ablation.
    Wang XR; Gao HJ; Wu SC; Jiang T; Zhou ZH; Bai YP
    Math Biosci Eng; 2019 Mar; 16(4):2514-2531. PubMed ID: 31137225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity.
    Chang I
    Biomed Eng Online; 2003 May; 2():12. PubMed ID: 12780939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A piecewise function of resistivity of liver: determining parameters with finite element analysis of radiofrequency ablation.
    Possebon R; Jiang Y; Mulier S; Wang C; Chen F; Feng Y; Ni Y
    Med Biol Eng Comput; 2018 Mar; 56(3):385-394. PubMed ID: 28766106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic finite element method for large tumor radiofrequency ablation simulation and planning.
    Duan B; Wen R; Fu Y; Chua KJ; Chui CK
    Med Eng Phys; 2016 Nov; 38(11):1360-1368. PubMed ID: 27717595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of cooled-tip probe radiofrequency ablation processes in liver tissue.
    Barauskas R; Gulbinas A; Vanagas T; Barauskas G
    Comput Biol Med; 2008 Jun; 38(6):694-708. PubMed ID: 18466889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects.
    Singh S; Melnik R
    Phys Med Biol; 2019 Dec; 64(24):245008. PubMed ID: 31600740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RF ablation thermal simulation model: Parameter sensitivity analysis.
    Wang X; Gao H; Wu S; Bai Y; Zhou Z
    Technol Health Care; 2018; 26(S1):179-192. PubMed ID: 29689761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumour model of different sizes.
    Jamil M; Ng EY
    J Therm Biol; 2015 Jul; 51():23-32. PubMed ID: 25965014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-assisted radiofrequency ablation of clinically extracted irregularly-shaped liver tumors.
    Shao YL; Arjun B; Leo HL; Chua KJ
    J Therm Biol; 2017 May; 66():101-113. PubMed ID: 28477903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal analysis of induced damage to the healthy cell during RFA of breast tumor.
    Singh S; Bhowmik A; Repaka R
    J Therm Biol; 2016 May; 58():80-90. PubMed ID: 27157337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform.
    Dos Santos I; Haemmerich D; Schutt D; da Rocha AF; Menezes LR
    Phys Med Biol; 2009 Feb; 54(3):627-40. PubMed ID: 19124948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrical conductivity of in vivo human uterine fibroids.
    DeLonzor R; Spero RK; Williams JJ
    Int J Hyperthermia; 2011; 27(3):255-65. PubMed ID: 21501027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.