BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 26352621)

  • 21. Crystallization behaviors of poly(3-hydroxybutyrate) and poly(l-lactic acid) in their immiscible and miscible blends.
    Zhang J; Sato H; Furukawa T; Tsuji H; Noda I; Ozaki Y
    J Phys Chem B; 2006 Dec; 110(48):24463-71. PubMed ID: 17134202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths.
    Dai S; Wang M; Zhuang Z; Ning Z
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films.
    Liu R; Dai L; Hu LQ; Zhou WQ; Si CL
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():397-403. PubMed ID: 28866180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(ʟ-lactide)/poly(ᴅ-lactide) blends and its impact on hindering stereocomplex crystallization.
    Chen Y; Lan Q
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129459. PubMed ID: 38232890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homo- and Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Copolymers of Crystalline and Amorphous Poly(lactide)s: Effects of Incorporation and Position of Amorphous Blocks.
    Tsuji H; Ogawa M; Arakawa Y
    J Phys Chem B; 2016 Oct; 120(42):11052-11063. PubMed ID: 27700096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological, thermal, rheological and mechanical properties of poly (butylene carbonate) reinforced by stereocomplex polylactide.
    Li Y; Han C; Yu Y; Huang D
    Int J Biol Macromol; 2019 Sep; 137():1169-1178. PubMed ID: 31301391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of poly(lactide) stereocomplexes: 3-armed poly(L-lactide) blended with linear and 3-armed enantiomers.
    Shao J; Sun J; Bian X; Cui Y; Li G; Chen X
    J Phys Chem B; 2012 Aug; 116(33):9983-91. PubMed ID: 22849773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospinning of poly(lactic acid) stereocomplex nanofibers.
    Tsuji H; Nakano M; Hashimoto M; Takashima K; Katsura S; Mizuno A
    Biomacromolecules; 2006 Dec; 7(12):3316-20. PubMed ID: 17154458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Processing of Stereocomplex-Type Polylactide.
    Bai H; Deng S; Bai D; Zhang Q; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 28898498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. 3. Homocrystallized and amorphous blend films.
    Tsuji H; Del Carpio CA
    Biomacromolecules; 2003; 4(1):7-11. PubMed ID: 12523839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereocomplex crystallites.
    Liu H; Zhao Y; Zheng Y; Chen J; Wang J; Gao G; Bai D
    Int J Biol Macromol; 2023 Mar; 232():123422. PubMed ID: 36708887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paclitaxel-loaded poly(L-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release.
    Liggins RT; Burt HM
    Int J Pharm; 2004 Sep; 282(1-2):61-71. PubMed ID: 15336382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significantly High Melting Temperature of Homopolymer Crystals Obtained in a Poly(l-Lactic Acid)/Poly(d-Lactic Acid) (50/50) Blend.
    Mahmoud NHM; Takagi H; Shimizu N; Igarashi N; Sakurai S
    ACS Omega; 2023 Oct; 8(43):40482-40493. PubMed ID: 37929159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure Mediation and Properties of Poly(
    Yang B; Wang R; Ma HL; Li X; Brünig H; Dong Z; Qi Y; Zhang X
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and Morphology of Poly(lactic acid) Stereocomplex Nanofiber Shish Kebabs.
    Xie Q; Chang X; Qian Q; Pan P; Li CY
    ACS Macro Lett; 2020 Jan; 9(1):103-107. PubMed ID: 35638649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling stereocomplex crystal morphology in poly(lactide) through chain alignment.
    Tuccitto AV; Anstey A; Sansone ND; Park CB; Lee PC
    Int J Biol Macromol; 2022 Oct; 218():22-32. PubMed ID: 35850270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends.
    Park JW; Doi Y; Iwata T
    Biomacromolecules; 2004; 5(4):1557-66. PubMed ID: 15244478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallization-driven formation poly (l-lactic acid)/poly (d-lactic acid)-polyethylene glycol-poly (l-lactic acid) small-sized microsphere structures by solvent-induced self-assembly.
    Wang K; Wang R; Hu K; Ma Z; Zhang C; Sun X
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127924. PubMed ID: 37944727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of toughness by stereocomplex crystal formation in optically pure polylactides of high molecular weight.
    López-Rodríguez N; Martínez de Arenaza I; Meaurio E; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Sep; 37():219-25. PubMed ID: 24951928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.