These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 26352637)

  • 41. Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric MR imaging.
    Niaf É; Flamary R; Rouvière O; Lartizien C; Canu S
    IEEE Trans Image Process; 2014 Mar; 23(3):979-91. PubMed ID: 24464613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SPLBoost: An Improved Robust Boosting Algorithm Based on Self-Paced Learning.
    Wang K; Wang Y; Zhao Q; Meng D; Liao X; Xu Z
    IEEE Trans Cybern; 2021 Mar; 51(3):1556-1570. PubMed ID: 31880577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unsupervised vector image segmentation by a tree structure-ICM algorithm.
    Fwu JK; Djuric PM
    IEEE Trans Med Imaging; 1996; 15(6):871-80. PubMed ID: 18215966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Auto-context and its application to high-level vision tasks and 3D brain image segmentation.
    Tu Z; Bai X
    IEEE Trans Pattern Anal Mach Intell; 2010 Oct; 32(10):1744-57. PubMed ID: 20724753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Boosting Approach to Exploit Instance Correlations for Multi-Instance Classification.
    Li Y; Wang S; Tian Q; Ding X
    IEEE Trans Neural Netw Learn Syst; 2016 Dec; 27(12):2740-2747. PubMed ID: 26600377
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rescaled Boosting in Classification.
    Wang Y; Liao X; Lin S
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2598-2610. PubMed ID: 30605106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequential Labeling With Structural SVM Under Nondecomposable Losses.
    Zhang G; Piccardi M; Borzeshi EZ
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4177-4188. PubMed ID: 29989972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structured Labels in Random Forests for Semantic Labelling and Object Detection.
    Kontschieder P; Bulò SR; Pelillo M; Bischof H
    IEEE Trans Pattern Anal Mach Intell; 2014 Oct; 36(10):2104-16. PubMed ID: 26352638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accurate on-line ν-support vector learning.
    Gu B; Wang JD; Yu YC; Zheng GS; Huang YF; Xu T
    Neural Netw; 2012 Mar; 27():51-9. PubMed ID: 22057091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient Exact Inference With Loss Augmented Objective in Structured Learning.
    Bauer A; Nakajima S; Muller KR
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2566-2579. PubMed ID: 28113643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust Structured Subspace Learning for Data Representation.
    Li Z; Liu J; Tang J; Lu H
    IEEE Trans Pattern Anal Mach Intell; 2015 Oct; 37(10):2085-98. PubMed ID: 26353186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robust 2D principal component analysis: a structured sparsity regularized approach.
    Yipeng Sun ; Xiaoming Tao ; Yang Li ; Jianhua Lu
    IEEE Trans Image Process; 2015 Aug; 24(8):2515-26. PubMed ID: 25838521
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Image Segmentation Using Higher-Order Correlation Clustering.
    Kim S; Yoo CD; Nowozin S; Kohli P
    IEEE Trans Pattern Anal Mach Intell; 2014 Sep; 36(9):1761-74. PubMed ID: 26352230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust support vector machine-trained fuzzy system.
    Forghani Y; Yazdi HS
    Neural Netw; 2014 Feb; 50():154-65. PubMed ID: 24316676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.
    Jrad N; Congedo M; Phlypo R; Rousseau S; Flamary R; Yger F; Rakotomamonjy A
    J Neural Eng; 2011 Oct; 8(5):056004. PubMed ID: 21817778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robust and Efficient Boosting Method Using the Conditional Risk.
    Xiao Z; Luo Z; Zhong B; Dang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jul; 29(7):3069-3083. PubMed ID: 28678719
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An SMO algorithm for the potential support vector machine.
    Knebel T; Hochreiter S; Obermayer K
    Neural Comput; 2008 Jan; 20(1):271-87. PubMed ID: 18045009
    [TBL] [Abstract][Full Text] [Related]  

  • 59. White box radial basis function classifiers with component selection for clinical prediction models.
    Van Belle V; Lisboa P
    Artif Intell Med; 2014 Jan; 60(1):53-64. PubMed ID: 24262978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arbitrary norm support vector machines.
    Huang K; Zheng D; King I; Lyu MR
    Neural Comput; 2009 Feb; 21(2):560-82. PubMed ID: 19431269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.