These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26352703)

  • 1. Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure.
    Long G; Wu B; Yang X; Kan B; Zhou YC; Chen LC; Wan X; Zhang HL; Sum TC; Chen Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21245-53. PubMed ID: 26352703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Stability for Small Molecule Organic Solar Cells by Suppressing the Trap Mediated Recombination.
    Hao X; Wang S; Sakurai T; Masuda S; Akimoto K
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18379-86. PubMed ID: 26260023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.
    Wang Y; Zhang Y; Lu G; Feng X; Xiao T; Xie J; Liu X; Ji J; Wei Z; Bu L
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13741-13747. PubMed ID: 29589431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt.
    Yin Z; Zheng Q; Chen SC; Cai D
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9015-25. PubMed ID: 23984993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced performance of semitransparent inverted organic photovoltaic devices via a high reflector structure.
    Zhang DD; Jiang XC; Wang R; Xie HJ; Ma GF; Ou QD; Chen YL; Li YQ; Tang JX
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10185-90. PubMed ID: 24060490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomer Molecules for Efficient Organic Photovoltaics.
    Lin Y; Zhan X
    Acc Chem Res; 2016 Feb; 49(2):175-83. PubMed ID: 26540366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squaraine based solution processed inverted bulk heterojunction solar cells processed in air.
    Varma PC; Namboothiry MA
    Phys Chem Chem Phys; 2016 Feb; 18(5):3438-43. PubMed ID: 26426261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics.
    Holliday S; Ashraf RS; Nielsen CB; Kirkus M; Röhr JA; Tan CH; Collado-Fregoso E; Knall AC; Durrant JR; Nelson J; McCulloch I
    J Am Chem Soc; 2015 Jan; 137(2):898-904. PubMed ID: 25545017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realizing Highly Efficient Inverted Photovoltaic Cells by Combination of Nonconjugated Small-Molecule Zwitterions with Polyethylene Glycol.
    Zhang W; Song C; Liu X; Fang J
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18593-9. PubMed ID: 27355561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells.
    Long G; Wan X; Kan B; Hu Z; Yang X; Zhang Y; Zhang M; Wu H; Huang F; Su S; Cao Y; Chen Y
    ChemSusChem; 2014 Aug; 7(8):2358-64. PubMed ID: 24984949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2'-Bithiophene Central Cores.
    Wang Z; Li Z; Liu J; Mei J; Li K; Li Y; Peng Q
    ACS Appl Mater Interfaces; 2016 May; 8(18):11639-48. PubMed ID: 27097642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells.
    Fang J; Deng D; Wang Z; Adil MA; Xiao T; Wang Y; Lu G; Zhang Y; Zhang J; Ma W; Wei Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12913-12920. PubMed ID: 29569439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance photovoltaic applications using solution-processed small molecules.
    Chen Y; Wan X; Long G
    Acc Chem Res; 2013 Nov; 46(11):2645-55. PubMed ID: 23902284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells.
    Coughlin JE; Henson ZB; Welch GC; Bazan GC
    Acc Chem Res; 2014 Jan; 47(1):257-70. PubMed ID: 23984626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improve the operational stability of the inverted organic solar cells using bilayer metal oxide structure.
    Chang J; Lin Z; Jiang C; Zhang J; Zhu C; Wu J
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18861-7. PubMed ID: 25299062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficiency air-processed dithienogermole-based polymer solar cells.
    Constantinou I; Lai TH; Zhao D; Klump ED; Deininger JJ; Lo CK; Reynolds JR; So F
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4826-32. PubMed ID: 25668328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient conventional- and inverted-type photovoltaic cells using a planar alternating polythiophene copolymer.
    Lee W; Choi H; Hwang S; Kim JY; Woo HY
    Chemistry; 2012 Feb; 18(9):2551-8. PubMed ID: 22278965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.