These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26352859)

  • 1. Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions.
    Wang G; Yuan C; Fu B; He L; Reichmanis E; Wang H; Zhang Q; Li Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21580-8. PubMed ID: 26352859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic shear flow in microchannels.
    Mampallil D; van den Ende D
    J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
    Farshchian B; Amirsadeghi A; Choi J; Park DS; Kim N; Park S
    Nano Converg; 2017; 4(1):4. PubMed ID: 28303213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel.
    Lim AE; Lim CY; Lam YC; Taboryski R; Wang SR
    Nanotechnology; 2017 Jun; 28(25):255303. PubMed ID: 28510536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of well and groove microchannel bioreactors for cell culture.
    Korin N; Bransky A; Khoury M; Dinnar U; Levenberg S
    Biotechnol Bioeng; 2009 Mar; 102(4):1222-30. PubMed ID: 18973280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wall effects in continuous microfluidic magneto-affinity cell separation.
    Wu L; Zhang Y; Palaniapan M; Roy P
    Biotechnol Bioeng; 2010 May; 106(1):68-75. PubMed ID: 20091764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inner Surface Design of Functional Microchannels for Microscale Flow Control.
    Wang S; Yang X; Wu F; Min L; Chen X; Hou X
    Small; 2020 Mar; 16(9):e1905318. PubMed ID: 31793747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D nanomolding for lab-on-a-chip applications.
    Farshchian B; Park S; Choi J; Amirsadeghi A; Lee J; Park S
    Lab Chip; 2012 Nov; 12(22):4764-71. PubMed ID: 22990333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-induced fabrication of ZnO nanostructures in pillar-arrayed microchannels.
    Xu R; Li S; Yu SX; Liu YJ; Xie W; Zhan Q; Zhao Z; Li X
    Lab Chip; 2024 Jul; ():. PubMed ID: 39027967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing synthetic, pumping cilia that switch the flow direction in microchannels.
    Alexeev A; Yeomans JM; Balazs AC
    Langmuir; 2008 Nov; 24(21):12102-6. PubMed ID: 18847292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic self-assembly and directed flow of rotating colloids in microchannels.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031404. PubMed ID: 22060368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System.
    Kulkarni AA; Sebastian Cabeza V
    Langmuir; 2017 Dec; 33(50):14315-14324. PubMed ID: 29156882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic synthesis of atto-liter scale double emulsions toward ultrafine hollow silica spheres with hierarchical pore networks.
    Jeong WC; Choi M; Lim CH; Yang SM
    Lab Chip; 2012 Dec; 12(24):5262-71. PubMed ID: 23123671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time spectroscopic monitoring of continuous-flow synthesis of zinc oxide nano-structures in femtosecond laser fabricated 3D microfluidic microchannels with integrated on-chip fiber probe array.
    Wu M; Li X; Yin DF; Chen W; Qi J; Hu M; Xu J; Cheng Y
    Lab Chip; 2023 Aug; 23(17):3785-3793. PubMed ID: 37492963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous and precise particle separation by electroosmotic flow control in microfluidic devices.
    Kawamata T; Yamada M; Yasuda M; Seki M
    Electrophoresis; 2008 Apr; 29(7):1423-30. PubMed ID: 18384021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets.
    Faustini M; Kim J; Jeong GY; Kim JY; Moon HR; Ahn WS; Kim DP
    J Am Chem Soc; 2013 Oct; 135(39):14619-26. PubMed ID: 23998717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.