BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26352877)

  • 1. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.
    Feng X; Ullah N; Wang X; Sun X; Li C; Bai Y; Chen L; Li Z
    J Food Sci; 2015 Oct; 80(10):E2217-27. PubMed ID: 26352877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and structural property analysis of bacterial cellulose composites.
    Dayal MS; Catchmark JM
    Carbohydr Polym; 2016 Jun; 144():447-53. PubMed ID: 27083837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.
    Ge HJ; Du SK; Lin DH; Zhang JN; Xiang JL; Li ZX
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1519-31. PubMed ID: 21947710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dyeing of bacterial cellulose films using plant-based natural dyes.
    Costa AFS; de Amorim JDP; Almeida FCG; de Lima ID; de Paiva SC; Rocha MAV; Vinhas GM; Sarubbo LA
    Int J Biol Macromol; 2019 Jan; 121():580-587. PubMed ID: 30336235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions.
    Liu K; Catchmark JM
    Carbohydr Polym; 2019 Sep; 219():12-20. PubMed ID: 31151508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture.
    Nagashima A; Tsuji T; Kondo T
    Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains.
    Fang L; Catchmark JM
    Carbohydr Polym; 2015 Jan; 115():663-9. PubMed ID: 25439946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Bacterial Cellulose by
    Costa AFS; Almeida FCG; Vinhas GM; Sarubbo LA
    Front Microbiol; 2017; 8():2027. PubMed ID: 29089941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of bacterial cellulose produced using a trickling bed reactor.
    Lu H; Jiang X
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3844-61. PubMed ID: 24682876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.
    Ul-Islam M; Khan T; Park JK
    Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A.
    Aydın YA; Aksoy ND
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1065-75. PubMed ID: 24190494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source.
    Lin D; Lopez-Sanchez P; Li R; Li Z
    Bioresour Technol; 2014 Jan; 151():113-9. PubMed ID: 24212131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of bacterial cellulose production by ethanol and lactic acid by using
    Sharma P; Sharma R; Ahuja S; Yadav A; Arora S; Aggarwal NK
    Prep Biochem Biotechnol; 2024 May; 54(5):700-708. PubMed ID: 37937534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose.
    Wang X; Xie Y; Ge H; Chen L; Wang J; Zhang S; Guo Y; Li Z; Feng X
    Carbohydr Polym; 2018 Jan; 179():207-220. PubMed ID: 29111045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.
    de Oliveira SA; da Silva BC; Riegel-Vidotti IC; Urbano A; de Sousa Faria-Tischer PC; Tischer CA
    Int J Biol Macromol; 2017 Apr; 97():642-653. PubMed ID: 28109811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(glycidyl methacrylate)/bacterial cellulose nanocomposites: Preparation, characterization and post-modification.
    Faria M; Vilela C; Mohammadkazemi F; Silvestre AJD; Freire CSR; Cordeiro N
    Int J Biol Macromol; 2019 Apr; 127():618-627. PubMed ID: 30695728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible immobilization of urease by using bacterial cellulose nanofibers.
    Akduman B; Uygun M; Coban EP; Uygun DA; Bıyık H; Akgöl S
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2285-94. PubMed ID: 24068477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent rheological behaviour of bacterial cellulose hydrogel.
    Gao X; Shi Z; Kuśmierczyk P; Liu C; Yang G; Sevostianov I; Silberschmidt VV
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():153-9. PubMed ID: 26478298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.