These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26353016)

  • 1. Depth-Related Effects on a Meiofaunal Community Dwelling in the Periphyton of a Mesotrophic Lake.
    Kreuzinger-Janik B; Schroeder F; Majdi N; Traunspurger W
    PLoS One; 2015; 10(9):e0137793. PubMed ID: 26353016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.
    Vadeboncoeur Y; Peterson G; Vander Zanden MJ; Kalff J
    Ecology; 2008 Sep; 89(9):2542-52. PubMed ID: 18831175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of littoral periphyton on whole-lake metabolism relates to littoral vegetation in humic lakes.
    Vesterinen J; Devlin SP; Syväranta J; Jones RI
    Ecology; 2017 Dec; 98(12):3074-3085. PubMed ID: 28888038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes.
    Higgins SN; Althouse B; Devlin SP; Vadeboncoeur Y; Vander Zanden MJ
    Ecology; 2014 Aug; 95(8):2257-67. PubMed ID: 25230476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum in two Turkish lakes with different mixing regimes.
    Albay M; Akçaalan R
    Environ Monit Assess; 2008 Nov; 146(1-3):171-81. PubMed ID: 18188672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total mercury and methylmercury accumulation in periphyton of Boreal Shield lakes: influence of watershed physiographic characteristics.
    Desrosiers M; Planas D; Mucci A
    Sci Total Environ; 2006 Feb; 355(1-3):247-58. PubMed ID: 15894350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal distribution of meiofaunal assemblages and its relationship with environmental factors in a semi-enclosed bay.
    Gao C; Liu X
    Mar Pollut Bull; 2018 Jun; 131(Pt A):45-52. PubMed ID: 29886970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.
    Genkai-Kato M; Vadeboncoeur Y; Liboriussen L; Jeppesen E
    Ecology; 2012 Mar; 93(3):619-31. PubMed ID: 22624216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assemblage composition and distribution of meiofauna in the southern Yellow Sea cold water mass during summer and autumn].
    Xu M; Liu XS; Liu QH; Huang DM; Yuan ZH; Zhang ZN
    Ying Yong Sheng Tai Xue Bao; 2015 Feb; 26(2):616-24. PubMed ID: 26094481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sessile macrobenthos (Ochrophyta) drives seasonal change of meiofaunal community structure on temperate rocky reefs.
    Losi V; Sbrocca C; Gatti G; Semprucci F; Rocchi M; Bianchi CN; Balsamo M
    Mar Environ Res; 2018 Nov; 142():295-305. PubMed ID: 30409384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of sewage discharge on abundance and biomass of meiofauna].
    Huang DM; Liu XS; Lin MX; Chen HP; Wei LM; Huang X; Zhang ZN
    Ying Yong Sheng Tai Xue Bao; 2014 Oct; 25(10):3023-31. PubMed ID: 25796915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanobacteria enhance methylmercury production: a hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil.
    Lázaro WL; Guimarães JR; Ignácio AR; Da Silva CJ; Díez S
    Sci Total Environ; 2013 Jul; 456-457():231-8. PubMed ID: 23602976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of periphyton communities to abrupt changes in water temperature and velocity, and the relevance of morphology: A mesocosm approach.
    Bondar-Kunze E; Kasper V; Hein T
    Sci Total Environ; 2021 May; 768():145200. PubMed ID: 33736353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algal Community Change in Mountain Lakes of the Alps Reveals Effects of Climate Warming and Shifting Treelines
    Kuefner W; Hofmann AM; Geist J; Dubois N; Raeder U
    J Phycol; 2021 Aug; 57(4):1266-1283. PubMed ID: 33751611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.
    Brothers S; Vadeboncoeur Y; Sibley P
    Glob Chang Biol; 2016 Dec; 22(12):3865-3873. PubMed ID: 27029572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure.
    Izagirre O; Serra A; Guasch H; Elosegi A
    Sci Total Environ; 2009 Oct; 407(21):5694-700. PubMed ID: 19666189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food web architecture and basal resources interact to determine biomass and stoichiometric cascades along a benthic food web.
    Guariento RD; Carneiro LS; Caliman A; Leal JJ; Bozelli RL; Esteves FA
    PLoS One; 2011; 6(7):e22205. PubMed ID: 21789234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes.
    Weisner SE; Strand JA; Sandsten H
    Oecologia; 1997 Feb; 109(4):592-599. PubMed ID: 28307344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.
    Zaharescu DG; Burghelea CI; Hooda PS; Lester RN; Palanca-Soler A
    Sci Total Environ; 2016 May; 551-552():496-505. PubMed ID: 26896578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of hydrodynamic process on bio-optical properties in algal-dominated lake region of shallow lake].
    Liu XH; Feng LQ; Zhang YL; Zhao LL; Zhu MY; Shi ZQ; Yin Y; Ding YQ
    Huan Jing Ke Xue; 2012 Feb; 33(2):412-20. PubMed ID: 22509575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.