These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 26353065)
1. Spherical and Hyperbolic Embeddings of Data. Wilson RC; Hancock ER; Pekalska E; Duin RP IEEE Trans Pattern Anal Mach Intell; 2014 Nov; 36(11):2255-69. PubMed ID: 26353065 [TBL] [Abstract][Full Text] [Related]
2. Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design. Fan X; Yang CH; Vemuri BC Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit; 2022 Jun; 2022():356-365. PubMed ID: 36911245 [TBL] [Abstract][Full Text] [Related]
3. Hyperbolic hierarchical knowledge graph embeddings for biological entities. Li N; Yang Z; Yang Y; Wang J; Lin H J Biomed Inform; 2023 Nov; 147():104503. PubMed ID: 37778673 [TBL] [Abstract][Full Text] [Related]
4. Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds. Grattarola D; Zambon D; Livi L; Alippi C IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1856-1869. PubMed ID: 31380770 [TBL] [Abstract][Full Text] [Related]
5. Manifold learning on brain functional networks in aging. Qiu A; Lee A; Tan M; Chung MK Med Image Anal; 2015 Feb; 20(1):52-60. PubMed ID: 25476411 [TBL] [Abstract][Full Text] [Related]
6. Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels. Jayasumana S; Hartley R; Salzmann M; Li H; Harandi M IEEE Trans Pattern Anal Mach Intell; 2015 Dec; 37(12):2464-77. PubMed ID: 26539851 [TBL] [Abstract][Full Text] [Related]
8. On component-wise dissimilarity measures and metric properties in pattern recognition. De Santis E; Martino A; Rizzi A PeerJ Comput Sci; 2022; 8():e1106. PubMed ID: 36262128 [TBL] [Abstract][Full Text] [Related]
9. Refining Euclidean Obfuscatory Nodes Helps: A Joint-Space Graph Learning Method for Graph Neural Networks. Liu Z; Ji F; Yang J; Cao X; Zhang M; Chen H; Chang Y IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11720-11733. PubMed ID: 38875093 [TBL] [Abstract][Full Text] [Related]
10. Topographic mapping of large dissimilarity data sets. Hammer B; Hasenfuss A Neural Comput; 2010 Sep; 22(9):2229-84. PubMed ID: 20569180 [TBL] [Abstract][Full Text] [Related]
11. A geodesic framework for analyzing molecular similarities. Agrafiotis DK; Xu H J Chem Inf Comput Sci; 2003; 43(2):475-84. PubMed ID: 12653511 [TBL] [Abstract][Full Text] [Related]
12. Discriminative graph embedding for label propagation. Nguyen CH; Mamitsuka H IEEE Trans Neural Netw; 2011 Sep; 22(9):1395-405. PubMed ID: 21788187 [TBL] [Abstract][Full Text] [Related]
13. Thinking Outside the Euclidean Box: Riemannian Geometry and Inter-Temporal Decision-Making. Mishra H; Mishra A PLoS One; 2016; 11(3):e0145159. PubMed ID: 27018787 [TBL] [Abstract][Full Text] [Related]
14. GeodesicEmbedding (GE): A High-Dimensional Embedding Approach for Fast Geodesic Distance Queries. Xia Q; Zhang J; Fang Z; Li J; Zhang M; Deng B; He Y IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4930-4939. PubMed ID: 34478373 [TBL] [Abstract][Full Text] [Related]
15. Polyhedra and packings from hyperbolic honeycombs. Pedersen MC; Hyde ST Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6905-6910. PubMed ID: 29925600 [TBL] [Abstract][Full Text] [Related]
16. Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry. Gao W; Ma Z; Gan W; Liu S Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573742 [TBL] [Abstract][Full Text] [Related]
17. MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion. Wang J; Wang B; Gao J; Pan S; Liu T; Yin B; Gao W IEEE Trans Cybern; 2024 Oct; 54(10):5818-5831. PubMed ID: 38771679 [TBL] [Abstract][Full Text] [Related]
18. Manifold learning and maximum likelihood estimation for hyperbolic network embedding. Alanis-Lobato G; Mier P; Andrade-Navarro MA Appl Netw Sci; 2016; 1(1):10. PubMed ID: 30533502 [TBL] [Abstract][Full Text] [Related]
19. Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling. Yang X; Goh A; Qiu A Neuroimage; 2011 May; 56(1):149-61. PubMed ID: 21281721 [TBL] [Abstract][Full Text] [Related]
20. Capacity bounds for hyperbolic neural network representations of latent tree structures. Kratsios A; Hong R; Sáez de Ocáriz Borde H Neural Netw; 2024 Oct; 178():106420. PubMed ID: 38901097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]