BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 26353530)

  • 41. Achieving Out-of-Plane Thermoelectric Figure of Merit
    Park NW; Lee WY; Yoon YS; Kim GS; Yoon YG; Lee SK
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38247-38254. PubMed ID: 31542917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nano-structured interface of graphene and h-BN for sensing applications.
    de Souza FA; Amorim RG; Scopel WL; Scheicher RH
    Nanotechnology; 2016 Sep; 27(36):365503. PubMed ID: 27485857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Negative differential resistance in boron nitride graphene heterostructures: physical mechanisms and size scaling analysis.
    Zhao Y; Wan Z; Xu X; Patil SR; Hetmaniuk U; Anantram MP
    Sci Rep; 2015 May; 5():10712. PubMed ID: 25991076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced thermoelectric properties of graphene oxide patterned by nanoroads.
    Zhou S; Guo Y; Zhao J
    Phys Chem Chem Phys; 2016 Apr; 18(15):10607-15. PubMed ID: 27035740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of strain and defects on the thermal conductance of the graphene/hexagonal boron nitride interface.
    Song J; Xu Z; He X; Cai C; Bai Y; Miao L; Wang R
    Phys Chem Chem Phys; 2020 May; 22(20):11537-11545. PubMed ID: 32393941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Realizing high thermoelectric performance with comparable p- and n-type figure-of-merits in a graphene/h-BN superlattice monolayer.
    Zhou Z; Fan D; Liu H
    Phys Chem Chem Phys; 2019 Dec; 21(48):26630-26636. PubMed ID: 31793958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hexagonal Boron Nitride for Photonic Device Applications: A Review.
    Ogawa S; Fukushima S; Shimatani M
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strain-induced enhancement of thermoelectric performance of TiS
    Li G; Yao K; Gao G
    Nanotechnology; 2018 Jan; 29(1):015204. PubMed ID: 29125467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermoelectric Properties of Hexagonal M₂C₃ (M = As, Sb, and Bi) Monolayers from First-Principles Calculations.
    Zhu XL; Liu PF; Xie G; Zhou WX; Wang BT; Zhang G
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30979004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High thermoelectricpower factor in graphene/hBN devices.
    Duan J; Wang X; Lai X; Li G; Watanabe K; Taniguchi T; Zebarjadi M; Andrei EY
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14272-14276. PubMed ID: 27911824
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice.
    Yang J; Chen G; Han T; Zhang Q; Zhang YH; Jiang L; Lyu B; Li H; Watanabe K; Taniguchi T; Shi Z; Senthil T; Zhang Y; Wang F; Ju L
    Science; 2022 Mar; 375(6586):1295-1299. PubMed ID: 35298267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons.
    Bazrafshan MA; Khoeini F
    Sci Rep; 2022 Nov; 12(1):18419. PubMed ID: 36319726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Properties of intrinsic point defects and dimers in hexagonal boron nitride.
    Strand J; Larcher L; Shluger AL
    J Phys Condens Matter; 2020 Jan; 32(5):055706. PubMed ID: 31618727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Near-Field Radiative Heat Transfer between Graphene/hBN Systems.
    Lu L; Zhang B; Ou H; Li B; Zhou K; Song J; Luo Z; Cheng Q
    Small; 2022 May; 18(19):e2108032. PubMed ID: 35277922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phonon-Mediated Quasiparticle Lifetime Renormalizations in Few-Layer Hexagonal Boron Nitride.
    Røst HI; Cooil SP; Åsland AC; Hu J; Ali A; Taniguchi T; Watanabe K; Belle BD; Holst B; Sadowski JT; Mazzola F; Wells JW
    Nano Lett; 2023 Aug; 23(16):7539-7545. PubMed ID: 37561835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electric-Field Control in Phosphorene-Based Heterostructures.
    Pantis-Simut CA; Preda AT; Filipoiu N; Allosh A; Nemnes GA
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrical Transport and Network Percolation in Graphene and Boron Nitride Mixed-Platelet Structures.
    Debbarma R; Behura S; Nguyen P; Sreeprasad TS; Berry V
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8721-7. PubMed ID: 27002378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene and 2D Hexagonal Boron Nitride Heterostructure for Thermal Management in Actively Tunable Manner.
    Sun H; Jiang Y; Hua R; Huang R; Shi L; Dong Y; Liang S; Ni J; Zhang C; Dong R; Song Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultra-thin van der Waals magnetic tunnel junction based on monoatomic boron vacancy of hexagonal boron nitride.
    Harfah H; Wicaksono Y; Sunnardianto GK; Majidi MA; Kusakabe K
    Phys Chem Chem Phys; 2024 Mar; 26(12):9733-9740. PubMed ID: 38470432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.