These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26353624)

  • 1. High-Content Screening for Assessing Nanomaterial Toxicity.
    Huo L; Chen R; Shi X; Bai R; Wang P; Chang Y; Chen C
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1143-9. PubMed ID: 26353624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy.
    Farcal L; Torres Andón F; Di Cristo L; Rotoli BM; Bussolati O; Bergamaschi E; Mech A; Hartmann NB; Rasmussen K; Riego-Sintes J; Ponti J; Kinsner-Ovaskainen A; Rossi F; Oomen A; Bos P; Chen R; Bai R; Chen C; Rocks L; Fulton N; Ross B; Hutchison G; Tran L; Mues S; Ossig R; Schnekenburger J; Campagnolo L; Vecchione L; Pietroiusti A; Fadeel B
    PLoS One; 2015; 10(5):e0127174. PubMed ID: 25996496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines.
    Hansjosten I; Rapp J; Reiner L; Vatter R; Fritsch-Decker S; Peravali R; Palosaari T; Joossens E; Gerloff K; Macko P; Whelan M; Gilliland D; Ojea-Jimenez I; Monopoli MP; Rocks L; Garry D; Dawson K; Röttgermann PJF; Murschhauser A; Rädler JO; Tang SVY; Gooden P; Belinga-Desaunay MA; Khan AO; Briffa S; Guggenheim E; Papadiamantis A; Lynch I; Valsami-Jones E; Diabaté S; Weiss C
    Arch Toxicol; 2018 Feb; 92(2):633-649. PubMed ID: 29119250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID.
    Bondarenko OM; Heinlaan M; Sihtmäe M; Ivask A; Kurvet I; Joonas E; Jemec A; Mannerström M; Heinonen T; Rekulapelly R; Singh S; Zou J; Pyykkö I; Drobne D; Kahru A
    Nanotoxicology; 2016 Nov; 10(9):1229-42. PubMed ID: 27259032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput toxicity screening and intracellular detection of nanomaterials.
    Collins AR; Annangi B; Rubio L; Marcos R; Dorn M; Merker C; Estrela-Lopis I; Cimpan MR; Ibrahim M; Cimpan E; Ostermann M; Sauter A; Yamani NE; Shaposhnikov S; Chevillard S; Paget V; Grall R; Delic J; de-Cerio FG; Suarez-Merino B; Fessard V; Hogeveen KN; Fjellsbø LM; Pran ER; Brzicova T; Topinka J; Silva MJ; Leite PE; Ribeiro AR; Granjeiro JM; Grafström R; Prina-Mello A; Dusinska M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Jan; 9(1):. PubMed ID: 27273980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of neutrophil activation and toxicity elicited by engineered nanomaterials.
    Johnston H; Brown DM; Kanase N; Euston M; Gaiser BK; Robb CT; Dyrynda E; Rossi AG; Brown ER; Stone V
    Toxicol In Vitro; 2015 Aug; 29(5):1172-84. PubMed ID: 25962642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity.
    Kermanizadeh A; Vranic S; Boland S; Moreau K; Baeza-Squiban A; Gaiser BK; Andrzejczuk LA; Stone V
    BMC Nephrol; 2013 Apr; 14():96. PubMed ID: 23617532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.
    Wang A; Marinakos SM; Badireddy AR; Powers CM; Houck KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(5):430-48. PubMed ID: 23661551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacancy-induced toxicity of CoSe
    Wu G; Chen X; Zhang Z; Zhu N; Yu Q; Liu H; Liu L
    Nanotoxicology; 2020 Sep; 14(7):968-984. PubMed ID: 32633691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies.
    Chen RJ; Chen YY; Liao MY; Lee YH; Chen ZY; Yan SJ; Yeh YL; Yang LX; Lee YL; Wu YH; Wang YJ
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in-depth multi-omics analysis in RLE-6TN rat alveolar epithelial cells allows for nanomaterial categorization.
    Karkossa I; Bannuscher A; Hellack B; Bahl A; Buhs S; Nollau P; Luch A; Schubert K; von Bergen M; Haase A
    Part Fibre Toxicol; 2019 Oct; 16(1):38. PubMed ID: 31653258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles.
    Delaval M; Wohlleben W; Landsiedel R; Baeza-Squiban A; Boland S
    Arch Toxicol; 2017 Jan; 91(1):163-177. PubMed ID: 27060086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemosensitization effect of cerium oxide nanosheets by suppressing drug detoxification and efflux.
    Wu G; Zhang Z; Chen X; Yu Q; Ma X; Liu L
    Ecotoxicol Environ Saf; 2019 Jan; 167():301-308. PubMed ID: 30343144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological observation of embryoid bodies completes the in vitro evaluation of nanomaterial embryotoxicity in the embryonic stem cell test (EST).
    Corradi S; Dakou E; Yadav A; Thomassen LC; Kirsch-Volders M; Leyns L
    Toxicol In Vitro; 2015 Oct; 29(7):1587-96. PubMed ID: 26093180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment.
    El Yamani N; Collins AR; Rundén-Pran E; Fjellsbø LM; Shaposhnikov S; Zienolddiny S; Dusinska M
    Mutagenesis; 2017 Jan; 32(1):117-126. PubMed ID: 27838631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials?
    Melegari SP; Fuzinatto CF; Gonçalves RA; Oscar BV; Vicentini DS; Matias WG
    Chemosphere; 2019 Jun; 224():237-246. PubMed ID: 30822730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques.
    Lamon L; Asturiol D; Richarz A; Joossens E; Graepel R; Aschberger K; Worth A
    Part Fibre Toxicol; 2018 Sep; 15(1):37. PubMed ID: 30249272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotoxicity testing of different surface-functionalized SiO
    Haase A; Dommershausen N; Schulz M; Landsiedel R; Reichardt P; Krause BC; Tentschert J; Luch A
    Arch Toxicol; 2017 Dec; 91(12):3991-4007. PubMed ID: 28643002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidant generation, DNA damage and cytotoxicity by a panel of engineered nanomaterials in three different human epithelial cell lines.
    Thongkam W; Gerloff K; van Berlo D; Albrecht C; Schins RP
    Mutagenesis; 2017 Jan; 32(1):105-115. PubMed ID: 27834732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells.
    Otero-González L; Sierra-Alvarez R; Boitano S; Field JA
    Environ Sci Technol; 2012 Sep; 46(18):10271-8. PubMed ID: 22916708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.