These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26353637)

  • 21. Vertically aligned carbon nanopillars with size and spacing control for a transparent field emission display.
    Lee SW; Lee CH; Lee JA; Lee SS
    Nanotechnology; 2013 Jan; 24(2):025301. PubMed ID: 23237789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comprehensive Review of Gas Sensors Using Carbon Materials.
    Kim MI; Lee YS
    J Nanosci Nanotechnol; 2016 May; 16(5):4310-9. PubMed ID: 27483751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microscopic and spectroscopic study of self-ordering in poly(3-hexylthiophene)/carbon nanotubes nanocomposites.
    Goh RG; Bell JM; Motta N; Waclawik ER
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3929-33. PubMed ID: 17256355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons.
    Huang H; Wei D; Sun J; Wong SL; Feng YP; Neto AH; Wee AT
    Sci Rep; 2012; 2():983. PubMed ID: 23248746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes.
    Zhang X; Shi W; Zhu J; Kharistal DJ; Zhao W; Lalia BS; Hng HH; Yan Q
    ACS Nano; 2011 Mar; 5(3):2013-9. PubMed ID: 21332174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diameter-dependent solubility of single-walled carbon nanotubes.
    Duque JG; Parra-Vasquez AN; Behabtu N; Green MJ; Higginbotham AL; Price BK; Leonard AD; Schmidt HK; Lounis B; Tour JM; Doorn SK; Cognet L; Pasquali M
    ACS Nano; 2010 Jun; 4(6):3063-72. PubMed ID: 20521799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of fully flattened carbon nanotubes: a new graphene nanoribbon analogue.
    Choi DH; Wang Q; Azuma Y; Majima Y; Warner JH; Miyata Y; Shinohara H; Kitaura R
    Sci Rep; 2013; 3():1617. PubMed ID: 23563618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes.
    Papkov D; Beese AM; Goponenko A; Zou Y; Naraghi M; Espinosa HD; Saha B; Schatz GC; Moravsky A; Loutfy R; Nguyen ST; Dzenis Y
    ACS Nano; 2013 Jan; 7(1):126-42. PubMed ID: 23249440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures.
    Hernández-Ibáñez N; García-Cruz L; Montiel V; Foster CW; Banks CE; Iniesta J
    Biosens Bioelectron; 2016 Mar; 77():1168-74. PubMed ID: 26579934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis.
    Joung D; Chunder A; Zhai L; Khondaker SI
    Nanotechnology; 2010 Apr; 21(16):165202. PubMed ID: 20348593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemically derived graphene sheets top assembled over multi-walled carbon nanotube thin film by Langmuir Blodgett method for improved dual field emission.
    Roy R; Jha A; Chattopadhyay KK
    J Nanosci Nanotechnol; 2013 Jan; 13(1):452-60. PubMed ID: 23646754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of viral hydrogels for three-dimensional conducting nanocomposites.
    Chen PY; Hyder MN; Mackanic D; Courchesne NM; Qi J; Klug MT; Belcher AM; Hammond PT
    Adv Mater; 2014 Aug; 26(30):5101-7. PubMed ID: 24782428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes.
    Dimaki M; Bøggild P
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1973-8. PubMed ID: 18572601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic conversion of graphene into carbon nanotubes via gold nanoclusters at low temperatures.
    Dervishi E; Bourdo S; Driver JA; Watanabe F; Biris AR; Ghosh A; Berry B; Saini V; Biris AS
    ACS Nano; 2012 Jan; 6(1):501-11. PubMed ID: 22148744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-induced gap states at a carbon-nanotube intramolecular heterojunction observed by scanning tunneling microscopy.
    Ruppalt LB; Lyding JW
    Small; 2007 Feb; 3(2):280-4. PubMed ID: 17191289
    [No Abstract]   [Full Text] [Related]  

  • 39. Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
    Rodríguez-Manzo JA; Cretu O; Banhart F
    ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.
    Paratala BS; Jacobson BD; Kanakia S; Francis LD; Sitharaman B
    PLoS One; 2012; 7(6):e38185. PubMed ID: 22685555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.