These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26353638)

  • 1. The Surface Modification and Antimicrobial Activity of Basic Magnesium Hypochlorite Nanoparticles.
    Xu L; Tang Z; Xu J; Zhang J; Du J; Li N
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1229-35. PubMed ID: 26353638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction.
    Shi Y; Li Y; Zhang J; Yu Z; Yang D
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():346-55. PubMed ID: 25842144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Biogenic Silver Nanoparticle Using Rosa Chinensis Flower Extract and Its Antibacterial Property.
    Meng Y; Sun Y
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3969-72. PubMed ID: 27451748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.
    Ciobanu G; Ilisei S; Luca C
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():36-42. PubMed ID: 24411349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline Silver Nanoparticles by Using Polygala tenuifolia Root Extract as a Green Reducing Agent.
    Jun SH; Cha SH; Kim J; Cho S; Park Y
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1567-74. PubMed ID: 26353692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe2O4-GO Nanocomposite.
    Ma S; Zhan S; Jia Y; Zhou Q
    ACS Appl Mater Interfaces; 2015 May; 7(19):10576-86. PubMed ID: 25905556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity.
    Zhang M; Wang P; Sun H; Wang Z
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22108-15. PubMed ID: 25418198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Strategy to Develop Bioactive Nanoarchitecture Cellulose: Sustained Release and Multifarious Applications.
    Karuppusamy S; Pratheepkumar A; Dhandapani P; Maruthamuthu S; Kulandainathan MA
    J Biomed Nanotechnol; 2015 Sep; 11(9):1535-49. PubMed ID: 26485925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations.
    Ramasamy M; Lee JH; Lee J
    J Biomater Appl; 2016 Sep; 31(3):366-78. PubMed ID: 27117745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.
    Siqueira MC; Coelho GF; de Moura MR; Bresolin JD; Hubinger SZ; Marconcini JM; Mattoso LH
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5512-7. PubMed ID: 24758059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications.
    Tao Y; Ju E; Ren J; Qu X
    Adv Mater; 2015 Feb; 27(6):1097-104. PubMed ID: 25655182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of water-soluble Cu/PAA composite flowers and their antibacterial activities.
    Li B; Li Y; Wu Y; Zhao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():205-11. PubMed ID: 24411370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.
    Ahmad A; Wei Y; Syed F; Tahir K; Rehman AU; Khan A; Ullah S; Yuan Q
    Microb Pathog; 2017 Jan; 102():133-142. PubMed ID: 27916692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application.
    Yuan Y; Ding J; Xu J; Deng J; Guo J
    J Nanosci Nanotechnol; 2010 Aug; 10(8):4868-74. PubMed ID: 21125821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors.
    Li Y; Weng W
    J Mater Sci Mater Med; 2008 Jan; 19(1):19-25. PubMed ID: 17569011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave assisted antibacterial chitosan-silver nanocomposite films.
    Raghavendra GM; Jung J; Kim D; Seo J
    Int J Biol Macromol; 2016 Mar; 84():281-8. PubMed ID: 26706842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles.
    Fazly Bazzaz BS; Khameneh B; Jalili-Behabadi MM; Malaekeh-Nikouei B; Mohajeri SA
    Cont Lens Anterior Eye; 2014 Jun; 37(3):149-52. PubMed ID: 24121010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials.
    Zhang Z; Zhang J; Zhang B; Tang J
    Nanoscale; 2013 Jan; 5(1):118-23. PubMed ID: 23138501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro and In Vivo Evaluation of Pectin/Copper Exchanged Faujasite Composite Membranes.
    Ninan N; Muthiah M; Park IK; Elain A; Wong TW; Thomas S; Grohens Y
    J Biomed Nanotechnol; 2015 Sep; 11(9):1550-67. PubMed ID: 26485926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-repellent coatings prepared by modification of ZnO nanoparticles.
    Chakradhar RP; Dinesh Kumar V
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Aug; 94():352-6. PubMed ID: 22575349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.