These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26353667)

  • 1. Synthesis of Surface-Enhanced Raman Scattering-Active Gold Nanoflowers by 5-Hydroxytryptophan in Acidic Solution.
    Sun YN; Xu H; Ding XY; Yu YB; Zhang QQ
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1427-33. PubMed ID: 26353667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity.
    Jiang Y; Wu XJ; Li Q; Li J; Xu D
    Nanotechnology; 2011 Sep; 22(38):385601. PubMed ID: 21878721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Fabrication of Gold Nanoflowers Tuned by pH: Insights Into the Growth Mechanism.
    Lv C; Zhang XY; Mu CL; Wu D; Wang CM; Zhang QL
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2761-9. PubMed ID: 26353490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering.
    Song CY; Zhou N; Yang BY; Yang YJ; Wang LH
    Nanoscale; 2015 Oct; 7(40):17004-11. PubMed ID: 26416701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seedless synthesis and SERS characterization of multi-branched gold nanoflowers using water soluble polymers.
    Kariuki VM; Hoffmeier JC; Yazgan I; Sadik OA
    Nanoscale; 2017 Jun; 9(24):8330-8340. PubMed ID: 28590471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthesis of SERS-active gold nanoflower tags for in vivo applications.
    Xie J; Zhang Q; Lee JY; Wang DI
    ACS Nano; 2008 Dec; 2(12):2473-80. PubMed ID: 19206281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization.
    Bechelany M; Brodard P; Elias J; Brioude A; Michler J; Philippe L
    Langmuir; 2010 Sep; 26(17):14364-71. PubMed ID: 20715801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of size-tunable chitosan encapsulated gold-silver nanoflowers and their application in SERS imaging of living cells.
    Zhang G; Li J; Shen A; Hu J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21261-7. PubMed ID: 25622685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-templated gold nanoparticles formation.
    Sun L; Song Y; Wang L; Sun Y; Guo C; Liu Z; Li Z
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4415-23. PubMed ID: 19049035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of chitosan-coated gold nanoflowers as SERS-active probes.
    Xu D; Gu J; Wang W; Yu X; Xi K; Jia X
    Nanotechnology; 2010 Sep; 21(37):375101. PubMed ID: 20720293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle-directed generation of gold nanoflowers by gemini amphiphiles and the spacer-controlled morphology and optical property.
    Zhong L; Zhai X; Zhu X; Yao P; Liu M
    Langmuir; 2010 Apr; 26(8):5876-81. PubMed ID: 20000437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel, rapid, seedless, in situ synthesis method of shape and size controllable gold nanoparticles using phosphates.
    Liu K; He Z; Curtin JF; Byrne HJ; Tian F
    Sci Rep; 2019 May; 9(1):7421. PubMed ID: 31092878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and catalytic properties of Au-Pd nanoflowers.
    Xu J; Wilson AR; Rathmell AR; Howe J; Chi M; Wiley BJ
    ACS Nano; 2011 Aug; 5(8):6119-27. PubMed ID: 21761821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrophotometric evidence to the formation of AuCl4-CTA complex and synthesis of gold nano-flowers with tailored surface textures.
    Khan MN; Khan TA; Al-Thabaiti SA; Khan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Oct; 149():889-97. PubMed ID: 26004098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bovine serum albumin assisted preparation of ultra-stable gold nanoflowers and their selective Raman response to charged dyes.
    Zhang X; Han Y; Xing Z; Huang Z; Xie R; Yang W
    RSC Adv; 2019 Sep; 9(48):28228-28233. PubMed ID: 35530466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties.
    Wang Y; Asefa T
    Langmuir; 2010 May; 26(10):7469-74. PubMed ID: 20148597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step synthesis of gold nanoflowers of tunable size and absorption wavelength in the red & deep red range for SERS spectroscopy.
    Pacaud M; Hervé-Aubert K; Soucé M; Makki AA; Bonnier F; Fahmi A; Feofanov A; Chourpa I
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117502. PubMed ID: 31499392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of bifunctional gold/gelatin hybrid nanocomposites and their application.
    Cui Q; Yashchenok A; Zhang L; Li L; Masic A; Wienskol G; Möhwald H; Bargheer M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1999-2002. PubMed ID: 24405092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.