These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26354312)

  • 1. Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling.
    Yu Y; Burton SD; Tripathy SJ; Urban NN
    J Neurophysiol; 2015 Nov; 114(5):2830-42. PubMed ID: 26354312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical constraints on lateral inhibition in the olfactory bulb.
    McIntyre AB; Cleland TA
    J Neurophysiol; 2016 Jun; 115(6):2937-49. PubMed ID: 27009162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential serotonergic modulation across the main and accessory olfactory bulbs.
    Huang Z; Thiebaud N; Fadool DA
    J Physiol; 2017 Jun; 595(11):3515-3533. PubMed ID: 28229459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells.
    Balu R; Larimer P; Strowbridge BW
    J Neurophysiol; 2004 Aug; 92(2):743-53. PubMed ID: 15277594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel.
    Thiebaud N; Llewellyn-Smith IJ; Gribble F; Reimann F; Trapp S; Fadool DA
    J Physiol; 2016 May; 594(10):2607-28. PubMed ID: 26931093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperpolarization-Activated Currents and Subthreshold Resonance in Granule Cells of the Olfactory Bulb.
    Hu R; Ferguson KA; Whiteus CB; Meijer DH; Araneda RC
    eNeuro; 2016; 3(5):. PubMed ID: 27844056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical mechanisms of odor processing in olfactory bulb mitral cells.
    Rubin DB; Cleland TA
    J Neurophysiol; 2006 Aug; 96(2):555-68. PubMed ID: 16707721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afterhyperpolarization (AHP) regulates the frequency and timing of action potentials in the mitral cells of the olfactory bulb: role of olfactory experience.
    Duménieu M; Fourcaud-Trocmé N; Garcia S; Kuczewski N
    Physiol Rep; 2015 May; 3(5):. PubMed ID: 26019289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity.
    Friedrich RW; Laurent G
    Science; 2001 Feb; 291(5505):889-94. PubMed ID: 11157170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells.
    Burton SD; Urban NN
    J Physiol; 2014 May; 592(10):2097-118. PubMed ID: 24614745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.
    Carey RM; Sherwood WE; Shipley MT; Borisyuk A; Wachowiak M
    J Neurophysiol; 2015 May; 113(9):3112-29. PubMed ID: 25717156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraglomerular inhibition maintains mitral cell response contrast across input frequencies.
    Shao Z; Puche AC; Shipley MT
    J Neurophysiol; 2013 Nov; 110(9):2185-91. PubMed ID: 23926045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuft calcium spikes in accessory olfactory bulb mitral cells.
    Urban NN; Castro JB
    J Neurosci; 2005 May; 25(20):5024-8. PubMed ID: 15901783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct modifications of convergent excitatory and inhibitory inputs in developing olfactory circuits.
    Ma TF; Chen PH; Hu XQ; Zhao XL; Tian T; Lu W
    Neuroscience; 2014 Jun; 269():245-55. PubMed ID: 24704517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin modulates network activity in olfactory bulb slices: impact on odour processing.
    Kuczewski N; Fourcaud-Trocmé N; Savigner A; Thevenet M; Aimé P; Garcia S; Duchamp-Viret P; Palouzier-Paulignan B
    J Physiol; 2014 Jul; 592(13):2751-69. PubMed ID: 24710056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexing using synchrony in the zebrafish olfactory bulb.
    Friedrich RW; Habermann CJ; Laurent G
    Nat Neurosci; 2004 Aug; 7(8):862-71. PubMed ID: 15273692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell and circuit origins of fast network oscillations in the mammalian main olfactory bulb.
    Burton SD; Urban NN
    Elife; 2021 Oct; 10():. PubMed ID: 34658333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposing inward and outward conductances regulate rebound discharges in olfactory mitral cells.
    Balu R; Strowbridge BW
    J Neurophysiol; 2007 Mar; 97(3):1959-68. PubMed ID: 17151219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models.
    Craft MF; Barreiro AK; Gautam SH; Shew WL; Ly C
    PLoS Comput Biol; 2021 Sep; 17(9):e1009169. PubMed ID: 34543261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
    Fletcher ML; Smith AM; Best AR; Wilson DA
    J Neurosci; 2005 Jan; 25(4):792-8. PubMed ID: 15673658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.